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1 Intro
So far we’ve talked about about how random variables operate in a vacuum. We’ve covered the basic
probabilistic concepts, while spending hardly any time elucidating just how powerful these objects can be
when a little bit of creativity is applied. In this post we’ll explore one way in which random variables can be
reared into time dependent model of a system.

2 Markov Chains
Definition 2.1. Stochastic Processes are sequences of random variables where each random variable
represents the state of a system at a given time. A sequence with a discrete time parameter will take the form
X1, X2, ..., Xn, ... with X1 being the initial state of a the system and each Xi ∀ i > 1 representing system at
time i. Continuous stochastic processes also exist, but in this post we will focus solely on discrete ones.

Markov chains are a particular sort of discrete stochastic process where the current time state is only
dependent on the previous time state. Focusing in on the nth time state in a Markov chain we can say that
by definition it only depends upon the n− 1th time state. We can restate this by saying that for any n ≥ 1,
value b, and sequence of time states x1, ..., xn

P (Xn+1 ≤ b|X1 = x1, ..., Xn = xn) = P (Xn+1 ≤ b|Xn = xn) (1)

is the probability of xn+1 conditioned on the existing sequence of states.
Before moving on I would like to provide a little bit of clarification as to exactly what sort of Markov

chains we’ll be investigating in this post. Here we will only be working with a Markov chains that have been
constrained to have only a finite number of possible states. While more general forms do exist, it is easier
to introduce Markov chains as only having k possible states. Thus, for each time step we will refer to it’s
current condition by saying that at time n the chain is in state 1 ≤ j ≤ k.

With basic definitions out of the way we can get onto the real mechanics of Markov chains. To begin let’s
work out the joint pf of the first n states of a Markov chain. We can do this by using the multiplication rule
for conditional probabilities to expand the joint pf to

P (X1 = x1, X2 = x2, ..., Xn = xn) (2)
= P (X1 = x1)P (X2 = x2|X1 = x1)... (3)
. . . P (Xn = xn|Xn−1 = xn−1) (4)

And we can also show the probability of m > 0 future states conditioned on Xn = xn in a similar way to get

P (Xn+1 = xn+1, Xn+2 = xn+2, ..., Xn+m = xn+m|Xn = xn) (5)
= P (Xn+1 = xn+1|Xn = xn)P (Xn+2 = xn+2|Xn+1 = xn+1)... (6)
. . . P (Xn+m = xn+m|Xn+m−1 = xn+m−1) (7)

Much of our focus when working with Markov chains is understanding how exactly the process shifts from
state to state. The first step towards that goal is understanding what we call transmission distributions.
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Definition 2.2. Transmission Distributions are the conditional distributions that describe the movement
of the system between states. An example of such a distribution is P (Xn+1 = j|Xn = i) for i, j = 1, ..., k and
n ≥ 1.

A special case of these distributions are stationary transmission distributions where the probability
of shifting from one state to another remains the same regardless of what time step we are on (for all n).
This allows us to establish constant probabilities to describe a shift from state i to j that we denote pij .
More directly

P (Xn+1 = j|Xn = i) = pij ∀ n (8)

which can be further shortened to

g(j|i) = pij ∀ n, i, j (9)

If we know that the transition distributions for all possible state changes are stationary then we can
create what we call a transmission matrix. Assuming our transmission probabilities are given by pij =
P (Xn+1 = j|Xn = i) ∀ n, j, i then we define the transmission matrix P of our Markov chain to be a k × k
matrix where all entries are pij values. The overall composition of the matrix will be

P =


p11 . . . p1k

p21 . . . p2k

... . . . ...
pk1 . . . pkk

 (10)

A few notable things about these matrices are that they must be composed of exclusively non-negative
elements, and each row must sum to 1. The non-negativity follows directly from the fact that each element is
itself a probability value, while the assertion that each row must sum to 1 is a byproduct of the conditionality
woven into the matrix through each pij value. Since each row i is built out of the conditional probabilities
given by g(·|i) then the sum

∑k
j=1 pij must equal one, because i must transition to one of the other states

(or stay the same) 100% of the time.
I won’t wander off into uses of these transmission matrices at this time, but to give a little intuition as to

how they might be used I would ask what happens if multiply a 1× k matrix representing the current state
of the system with P? What might that tell us about how the system could evolve?

P and all transmission matrices fall under the broader category of matrices called stochastic matrices.
A stochastic matrix is a square matrix composed of non-negative entries with the property that every row
must sum to 1. Clearly P is such a matrix, and that every k × k stochastic matrix is a valid transmission
matrix for a finite Markov chain with stationary transmission probabilities and k possible states.

2.1 Multi-Step Transitions
To answer the question posed a few paragraphs back we can take a diversion to spend some time thinking
about multi-step transmissions. A single transmission matrix can be used to understand what the next state
of a system might be, so by stacking multiple matrices together we can find the probability of landing in
some state j from state i after m steps. Thus, we can say that the mth power Pm of P has elements pm

ij that
represent the chance of moving from i to j in m steps.

Note that the rows of Pm maintain the conditional property held by P. This means that the ith row of
Pm holds the conditional distribution of Xn+m given Xn = i (where n,m ≥ 1 and i = 1, ..., k).

2.1.1 Absorbing States

An absorbing state is one where we have a 100% chance of staying in the same state in the next step. In
terms of transmission probabilities, i is an absorbing state if pii = 1.
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2.2 Initial Distribution
Transmission matrices are a fantastic way of explaining how a system might evolve, but we currently lack
the proper input to allow us to simulate a system based on starting point. The input we need for this in an
initial distribution. An initial distribution is a 1× k matrix where the ith entry represents the probability
of the system being in that state. If for example, we have a system where k = 4 and we know the system
must start in the first state then the initial distribution will be [1, 0, 0, 0]. Alternatively if we knew that it
was just as likely to be in one state as it was another our initial distribution (often denoted ν) would be
[0.25, 0.25, 0.25, 0.25].

Naturally this means that the output of νPm will be another 1× k matrix that represents the chance
of being in each state after m steps. We don’t, however, always have to use matrix multiplication to make
use of an initial distribution. By plucking out individual values from ν we can things like rewrite 2 as
P (X1 = x1, X2 = x2, ..., Xn = xn) = vx1px1x2 . . . pxn−1xn .

It is also possible to find the marginal distributions of any step using ν and P. As I mentioned in the
previous paragraph νPm gives the probability of being in each state after m steps, but if we just rewind back
one step to νPm−1 we get the marginal distribution of the mth state (we subtract 1 because the ν is the first
state).

We can prove this by recognizing that in order to find the probability values of the marginal distribution of
the mth step we need to somehow find the probability of reaching each state by summing over the probability
of each path we can take to get there. This is equivalent to the sum

P (Xm = xm) =
k∑

xm−1=1
· · ·

k∑
x2=1

k∑
x1=1

vx1px1x2 . . . pxm−1xm (11)

To reason through this we start from the inner most sum, which only interacts with vx1px1x2 and results in
νP. As we work outward each new sum is equivalent to multiplying by an additional P. Thus, the second
sum is equal to νPP = νP2, and the eventual m− 1th sum returns νPm−1.

2.3 Stationary Distributions
Earlier we defined stationary transmission distributions in 2.2 as transmission distributions that remains
fixed over time. Here in this section we’ll discuss stationary distributions, which are more general but share
the important commonality that they are unaffected by time.

One way to define a stationary distribution is to use the transmission matrix P of a Markov chain. In
this case we say that a probability vector ν is a stationary distribution if νP = ν is true.

Therefore, if we are in a stationary distribution ν then the probability of being in some state i after n steps
is the same as being in the ith state from the start. That is to say that where we might be is independent
of time. It does not mean that we are just stuck in some state (in an absorbing state), or that the chain is
not changing over time. Unless the distribution is composed completely of absorbing states (which will be
stationary by definition) then the chain will jump between states at rates determined by ν. It also does not
mean that if we take in additional information (like knowledge of the chain being in specific states at specific
times) that we just have to default to ν and cannot do any other sort of calculations.

2.3.1 Finding Stationary Distributions

With a little linear algebra we can easily find stationary distributions of P. Given we know that νP = ν then
we also have that ν [P− I[ = 0 since ν = νI where I is a k × k identity matrix and 0 is a 1× k vector of all
zeroes. Ideally we would be able to solve this system of equations directly, but sadly we cannot due to there
being far too many possible solutions to identify a valid one. The reason for this is that if a valid solution v
exists then cv is also a solution ∀c ∈ R, because having k variables and k equations implies the existence of a
redundant equation.

We can sidestep this issue by asserting that the elements of our solution v sum to 1. We do this by
creating a new matrix G that is equal to P− I with the one important change that the final column of G
must be all ones. Then we can solve
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vG = (0, ..., 0, 1) (12)

to find a unique stationary distribution if it exists. To solve this equation we will invoke the existence of
G−1, which is the inverse of G with the property GG−1 = G−1G = I. This inverse begets the solution

v = (0, ..., 0, 1)G−1 (13)

The only drawback to this method is that if G is singular and has no inverse then it cannot be used.
Unfortunately, this means that we cannot use it to find stationary distributions when multiple exist, because
under those conditions our G will be singular.

2.3.2 Converging to a Stationary Distribution?

I’m going to end this section with a quick theorem. If there exists an m such that all entries of Pm are
strictly positive we can also say that

• we have a unique stationary distribution ν for our Markov chain,

• the limit limn→∞Pm is [ν, ν, ..., ν] i.e. a matrix where all rows are ν, and

• the distribution of the Markov chain will converge to ν as the number of steps n→∞ regardless of the
starting distribution.

I’m not going to spend much time on this theorem, but I will point out that the third statement seems to
follow directly from the second.

2.3.3 Other Stationary Stochastic Processes

The concept of stationary processes exists beyond the confines of Markov chains, and is crucial to things like
time series analysis. The ideas and intuition in these other cases are the same as the are for Markov chains in
that they center themselves upon time independence. The definitions are, however, a little different. Instead
of using a transmission matrix, joint CDFs of sequences of random variables separated by some arbitrary
time parameter or the auto-covariance of the process are used to determine stationarity.

At the end of this post (5) I’ve included a few problem write-ups for questions about these more general
stationary processes. To be completely honest I’m including them here, because I don’t have anywhere better
to put them and figure I might as well. Hopefully someone finds them interesting or helpful.

3 Conclusion
In this post we scratched the surface of Markov chains. The goal here was to touch on the most important
concepts needed to use Markov chains, or at least read about how they are employed by researchers and
practitioners. They really are a great tool to have in your tool belt even if you only ever break it out when
you need to figure out what is going on in some complex model based upon them. I highly recommend
reading deeper into Markov chains or stochastic processes in general if you found this post at all interesting.

With the end of this post I’ve reached the end of this mini series on random variables, but there is still
plenty more probability to cover. Next up is expectation.

4 Acknowledgments
These notes were based on Probability and Statistics (Fourth Edition) by DeGroot & Schervish.
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5 Worked Stationary Process Examples

Problem 1
Starting from a random walk defined as follows:

X0 = 0, Xt =
t∑

j=1
ξj , t = 1, 2, ... (14)

With each ξj taking on a value of ±1 with probability 1
2 −

1
2 , and all ξjs being i.i.d. We want to prove that

the random walk {Xt} is not weakly stationary.

Our first step is to evaluate the expectation and variance of each step in the process.

E[ξj ] = −1 + 1
2 = 0 (15)

E[
t∑

j=1
ξj ] =

t∑
j=1

E[ξj ] = t0 = 0 (16)

V ar(
t∑

j=1
ξj) = V ar(ξ1 + ξ2 + ...+ ξt) = tV ar(ξ) = tσ2 (17)

Now that we have both variance and expectation of our walk we can check the autocovariance of the walk.

Cov(Xt, Xt+k) = E[(Xt − E[Xt])(Xt+k − E[Xt+k])] = E[XtXt+k]− E[Xt]E[Xt+k]

= E[(
t∑

j=1
ξj)(

t+k∑
j=1

ξj)]− E[
t∑

j=1
ξj ]E[

t+k∑
j=1

ξj ]

= E[(
t∑

j=1
ξj)(

t∑
j=1

ξj +
k∑

j=t+1
ξj)]− E[

t∑
j=1

ξj ]E[
t∑

j=1
ξj +

k∑
j=t+1

ξj ]

= E[
t∑

j=1
ξj(

t∑
j=1

ξj)] + E[
t∑

j=1
ξj(

k∑
j=t+1

ξj)]− E[
t∑

j=1
ξj ]E[

t∑
j=1

ξj ]− E[
t∑

j=1
ξj ]E[

k∑
j=t+1

ξj ]

=

E[(
t∑

j=1
ξj)2]− (E[

t∑
j=1

ξj ])2

 +

E[
t∑

j=1
ξj(

k∑
j=t+1

ξj)]− E[
t∑

j=1
ξj ]E[

k∑
j=t+1

ξj ]


= V ar(

t∑
j=1

ξj) + Cov(
t∑

j=1
ξj ,

k∑
j=t+1

ξj)

= tσ2

(18)

The final result of the covariance function is tσ2 (since Cov(
∑t

j=1 ξj ,
∑k

j=t+1 ξj) = 0 due to the indepen-
dence of the two sums). Thus, the random walk is not stationary because it’s variance increases with t.

After showing that the random walk is not stationary I wanted to take a quick look at how V ar(
∑t

j=1 ξj)
itself evolves over time. To do so I first evaluated the variance as follows:
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V ar(Xt) = Cov(Xt, Xt) = E[X2
t ] = E[(

t∑
j=1

ξj)(
t∑

i=1
ξi)]

= E[
t∑

j=1

t∑
i=1

ξjξi] =
t∑

j=1

t∑
i=1

E[ξjξi]
(19)

At this point we can consider the possible values of E[ξjξi]. When i 6= j we have four possibilities of equal
probability ((1,−1), (−1, 1), (−1,−1), (1, 1)), which gives us E[ξjξi] = 0 when i 6= j. When i = j however, we
get that XjXi = 1, and E[XjXi] = 1. Therefore we can ignore the terms where i 6= j in

∑t
j=1

∑t
i=1 E[ξjξi]

and since there are n instances where i = j we get V ar(Xt) =
∑t

j=1
∑t

i=1 E[ξjξi] = n = σ2.

I wanted to check this result with a quick simulation, so I wrote a script in Python to generate random
walks and then plotted them along with the simulation mean, ±1 standard deviations, and the theoretical
σ2 = n =⇒ σ =

√
n line to see how well things line up.

Figure 1:

Things look to line up pretty well, so it appears that the experiment is matching the theoretical result well.
We can also see the explosion in variance over time that we saw while proving the walk was not stationary.

Problem 2

Xt = Acos(ωt) +Bsin(ωt), t = 0,±1,±2, ... (20)

Equation 20 is a process where A&B are uncorrelated standard random normal variables (with mean of
0 and variance of σ2), and ω ∈ [0, 2π) is a fixed frequency. We want to show that this process is stationary.

To do so, let’s evaluate the autocovariance of the process.
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Cov(Xt, Xt+k) = E[(Xt −��7
0

E[Xt])(Xt+k −��7
0

E[Xt+k])]
= E[XtXt+k]
= E[(Acos(ωt) +Bsin(ωt))(Acos(ω(t+ k)) +Bsin(ω(t+ k)))]
= E[A2cos(ωt)cos(ω(t+ k)) +B2sin(ωt)sin(ω(t+ k))]
E[AB](cos(ωt)Bsin(ω(t+ k)) + sin(ωt)cos(ω(t+ k)))
= E[A2cos(ωt)cos(ω(t+ k)) +B2sin(ωt)sin(ω(t+ k))]

���
��:0

E[A]E[B](cos(ωt)Bsin(ω(t+ k)) + sin(ωt)cos(ω(t+ k)))
= E[A2]cos(ωt)cos(ω(t+ k)) + E[B2]sin(ωt)sin(ω(t+ k))
= σ2(cos(ωt)cos(ω(t+ k)) + sin(ωt)sin(ω(t+ k)))
= σ2cos(ωk)

(21)

Given that the covariance function is only dependent upon the time separation k and not t we have that
Xt is weakly stationary.

Problem 3
We want to show that for every DAG there exists a topological ordering of the vertices. To do this we can
take an inductive approach.

• Base case: Suppose we have a DAG with a single node v1. This single node graph has a topological
order by default.

• Now assume G is a DAG and vk is a node with no outward edges. Then G− {vk} is also a DAG (we
cannot create new cycles in a DAG by removing a node)

• Assume G− {vk} has a topological ordering

• Then we can create a topological order for G by appending vk to the end of the topological order of
G− {vk}

– Since G − {vk} has a topological ordering v1...vk−1 so v1...vk−1vk becomes and ordering for G,
because no edge vivj where i > j exists in the topological ordering for G− {vk} and i cannot be k
since we chose vk to be a node with no outward edges

• Then by induction we have that our DAG G must have a topological ordering

We can also imagine altering the approach above by removing a node vk that has no incoming edges
(rather than no outward), and creating a topological ordering for G by appending vk to the front of the
assumed order for G− {vk}.

One question that might arise is how we can ensure the existence of nodes with no outward or inward
edges within our DAG. We can show that there exists such nodes by examining any given path P with
our DAG since the composition of such paths forms the graph. Let us assume that there exists a node vk

with no incoming edges. To show that such a node exists we will assume that there also exists some edge
< p, vk >. Then there is either some node p /∈ P that forms and edge < p, vk >, which cannot exist as it
would violate the structure of the path P . Alternatively there must be some node vi ∈ P that creates the
edge < vi, vk >, but this would create a cycle within our path which is impossible. Therefore, there cannot
be an edge < p, vk > and vk is in fact a node with no incoming edges. Similarly we can show that there exist
nodes with no outward edges by reversing the direction of the edges of our graph and then inspecting our
new path P ′ since we must still have a no with no incoming edges and such nodes are the same nodes with
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no outgoing edges in the original path P .

It is also interesting to note that we can strengthen our statement that every DAG has a topological
ordering by observing that a topological ordering cannot have a cycle since no ordering v1...vi...vj ...vl...vk

can have a cycle vi < ... < vj < ... < vl < vi. Therefore it must take the form of a DAG.
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