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1 Intro
Once we have the distribution of a random variable why not manipulate it? Maybe for some reason we would
like five times the distribution, or it’s square, or whatever else we might be able to think up for the purpose
of the problem at hand. With some random variable X already in hand it seems reasonable to believe we
could also find the distribution of 5X or X2. And it is, but before we can determine such distributions we
have to take a dip into the world of functions of random variables.

2 PF/PDFs and CDFs of Functions of a Random Variable
2.1 For Discrete Distributions
Starting with a discrete distribution X (with pf f) let’s define a function on all possible values of X that we’ll
call r. Now let’s use r to define a new random variable Y = r(X) with a pf g. Since g outputs probability
values for Y , which are related to the probability values of X then we should be able to define g using f .
The precise way we do this is by summing the probabilities of all X value that could produce Y = y. We can
write out this definition of g as

g(y) = P (Y = y) = P (r(X) = y) =
∑

{x|r(x)=y}

f(x) (1)

2.2 For Continuous Distributions
We define the pdfs and cdfs of the distributions of functions of a random variable slightly differently in the
continuous case. Instead of the standard format of the definition of a pdf of a continuous random variable
that invokes the existence of some integral that outputs the probability on some interval, we instead derive
the cdf of Y directly from f with

G(y) = P (Y ≤ y) = P (r(X) ≤ y) =
∫
{x|r(x)≤y}

f(x)dx (2)

from which we can derive the pdf (where G is differentiable) using

g(y) = gG(y)
dy

(3)

2.2.1 Linear Functions

A linear function is a function of the generic y = mx + b sort, and happens to be quite often used in statistical
models and elsewhere. In the world of random variables we can create Y as the result of a linear function
Y = mX + b (where m 6= 0). We can then find the pdf of Y to be

g(y) = 1
|a|

f(y − b

a
) for −∞ < y <∞ (4)

where f is the pdf of X.

1



3 Probability Integral Transforms
The probability integral transform is an operation where we use a random variable X with a continuous cdf
F to create a new random variable Y = F (x). Due to the nature of F we now have a random variable in Y
that is equivalent to the uniform distribution on [0, 1].

The transformation works, because we know that 0 ≤ F (x) ≤ 1 then P (Y < 0) = P (Y > 1) = 0. And we
know that F (x) = y for some set of x values that exist on a bounded interval [x0, x1]. Therefore, we can say
that Y ≤ y if and only if X ≤ x1 (where x1 is the upper bound of the interval we just mentioned). Thus, the
cdf of Y is

G(y) = P (Y ≤ y) = P (X ≤ x1) = F (x1) = y (5)

and the distribution of Y is the uniform distribution on [0, 1]. To quickly restate, since the cdf G(y) = y for
0 < y < 1 is also the cdf of the uniform distribution we can draw the equivalence.

Transforming a distribution to a uniform one is not all that interesting on its own, but with just a another
short step we can then convert this new uniform distribution into any sort of our choosing. To do this
we just need another continuous cdf, but first we need to introduce a corollary. Assume Y represents a
uniform distribution on [0, 1] and F is a continuous cdf with the quantile function F−1. Then F is the cdf of
X = F−1(Y ).

We can put this corollary into action in order to transform Y into a third variable Z by noticing that
for some continuous cdf G we can define Z as G−1(Y ). Then by our corollary we get that G is the cdf of
Z = G−1(F (X)).

3.1 Pseudo-Random Numbers
Although I won’t go into much detail about it on this post, it should be noted that the probability integral
transform can be quite useful when we need to generate pseudo-random numbers. Due to our newfound
ability to convert a uniform distribution into whatever distribution we can think of (with a continuous cdf),
so long as we can generate uniform pseudo-random numbers we can also generate pseudo random numbers
from your desired distribution. To formalize this a bit we can say that if we have a random variable X with a
uniform distribution on [0, 1] and another random variable Y = G−1(X) has a continuous cdf G with quantile
G−1. Then we can use X to produce a sequence of independent values x1, ..., xn, and then transform them to
y1, ..., yn using G−1 while maintaining its random sample-ness.

4 Functions of Multiple Random Variables
When we have more than a single random variable things proceed much the same way they do when we work
with multivariate distributions. That is to say that the definitions are altered to fit the new conditions, but
the intuition remains the same. Here in this section we’ll retool the ideas presented in section 2 to make
things gel with as many variables as we might need.

4.1 For Discrete Joint Distributions
Let’s say that we have a group of random variables X1, ..., Xn that hold a discrete joint distribution with pf
f . Then we can define a function of this set of random variables as Y = r(X1, ..., Xn). Now using that form
let’s define m functions of our set of random variables as

Y1 = r1(X1, ..., Xn) (6)
Y2 = r2(X1, ..., Xn) (7)

... (8)
Ym = rm(X1, ..., Xn) (9)
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To define a joint pf of these functions we take some number of values y1, ..., ym produced by the random
variables Y1, ..., Ym, as well as the set of all points (x1, ..., xn) ∈ A that relate to the y values via the
relationship

r1(x1, ..., xn) = y1 (10)
r2(x1, ..., xn) = y2 (11)

... (12)
rm(x1, ..., xn) = ym (13)

Thus, by following the process we used in 1 we can solve for the probability g(y1, ..., ym) by summing over the
probabilities of all points (x1, .., xn) that map to our y values through r. This sum will then take the form

g(y1, ..., ym) =
∑

(x1,...,xn)∈A

f(x1, ..., xn) (14)

4.1.1 Relation to Binomial and Bernoulli Distributions

We often think of binomial distributions as being composed of a sequence of Bernoulli trials. Therefore we
should be able to relate a sequence of i.i.d. random variables X1, ..., Xn following a Bernoulli distribution
(with parameter p) to a random variable Y that follows a binomial distribution (that has parameters p and
n) with Y = X1 + ... + Xn.

Beyond simple intuition, we can show that this relationship holds weight starting with the assertion that
Y = y if and only if we have exactly y of our Bernoulli random variables equaling 1 and the remaining n− y
equaling 0. We also know that the vector (X1, ..., Xn) has

(
n
y

)
possible values that have our desired number

of zeroes and ones. All of these vector configurations have a probability of occurring that is tied to the
parameter p, since each element of the each vector has a probability p of being a one and probability 1− p of
being a zero. Therefore, the probability of each individual vector is py(1− p)n−y, and the probability that
Y = y is the sum of all these vector probabilities, which equates to

(
n
y

)
py(1− p)n−y. This result shows our

proposed relationship is correct, because it is the pf of the binomial distribution.

4.2 For Continuous Joint Distributions
Functions of continuous joint distributions follow the same behavioral path, but with the standard "we’re
now working with the reals" twist. Put directly: it’s once again time to integrate. To set things up let’s say
that we have a set of random variables X = (X1, ..., Xn) that have a joint pdf f , and that Y = r(X). We
will also define a set Ay = {x|r(x) ≤ y} for each value y (which is very similar to the A in 14). Then we
define the cdf of Y to be

G(y) =
∫

Ay

· · ·
∫

f(x)dx (15)

We get this definition from the equality

G(y) = P (Y ≤ y) = P (r(X) ≤ y) = P (X ∈ Ay) (16)

whose final term P (X ∈ Ay) is equivalent to 15.
We can also find the pdf Y by taking the derivative of G, so long as Y is continuous.

4.2.1 Bivariate Linear Functions

In 2.2.1 we showed how we can find the pdf of a linear function of a single variable. Here we’ll expand upon
such univariate functions to develop cdfs and pdfs for linear functions of two variables. Although this won’t
quite reach the point of having a general form for linear functions of an arbitrary number of random variables,
we’ll still make good progress towards that here.
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Suppose we have the joint pdf f of two random variables X1 & X2, and let Y = m1X1 + m2X2 + b (where
m1 6= 0). Then the pdf g of Y (which will have a continuous distribution) will be

g(y) =
∫ ∞
−∞

f

(
y − b−m2x2

m1
, x2

)
1
|m1|

dx2 (17)

To prove 17 we will use essentially the same process used to show 15. We begin by creating our
Ay = {(x1, x2)|m1x1 + m2x2 + b ≤ y}, and then setting up our integral for G (while assuming m1 > 0)

G(y) =
∫

Ay

∫
f(x1, x2)dx1dx2 =

∫ ∞
−∞

∫ (y−b−m2x2)/m1

−∞
f(x1, x2)dx1dx2 (18)

To proceed we need to modify the inner integral by carrying out a change of variables. The change we’ll
use is z = m1x1 + m2x2 + b, which becomes x1 = z −m2x2 − b

m1
with dx1 = dz

m1
. Plugging this in causes the

inner integral to become ∫ y

−∞
f

(
z − b−m2x2

m1
, x2

)
1

m1
dz (19)

that we can insert into 18 to create

G(y) =
∫ ∞
−∞

∫ y

−∞
f

(
z − b−m2x2

m1
, x2

)
1

m1
dzdx2 (20)

=
∫ y

−∞

∫ ∞
−∞

f

(
z − b−m2x2

m1
, x2

)
1

m1
dx2dz (21)

Then by substituting the g(z) for the inner integral we get G(y) =
∫ y

−∞ g(z)dz. Therefore, since the derivative
of G(y) is g(y) we have our proof, because g(y) is equal to 17.

4.2.2 Convolutions

A convolution is a special case of the theorem we expressed in 17 where X1 and X2 are independent,
m1 = m2 = 1, and b = 0. These conditions leave us with the arrangement Y = X1 + X2, where the
distribution of Y is called the convolution of X1 and X2. Similarly, we can call the pdf of Y the convolution
of the pdfs of X1 and X2.

Then if we let the pdfs of X1 and X2 be f1 and f2 respectively, we can use 17 to find that the pdf of
Y = X1 + X2 is

g(y) =
∫ ∞
−∞

f (y − x2, x2) dx2 (22)

=
∫ ∞
−∞

f1(y − x2)f2(x2)dx2 (23)

or if we flip the variables we could get1

g(y) =
∫ ∞
−∞

f1(x1)f2(y − x1)dx1 (24)

While I’m going to end this brief aside on convolutions here, it should be noted that the convolution
operation is a surprising powerful one with applications in probability and beyond.

1I typed up these last few convolution equations fairly late at night and have a feeling I made a mistake, but I’m not currently
seeing it. If anyone happens to read this and notice something’s off please let me know :)

4



5 Summary
In this post we covered a number of important topics related to functions of random variables. At this point
we should have a solid enough understanding of the basics, but there are still a fair few details I left out and
didn’t touch on at all. The most glaring of these are the direct transformation/derivations of the pdfs of
functions of a random variable. I might dive deeper into this at some point in the future, but if I do I think
it’ll be part of a slightly different series of posts centered on the details I’ve been skirting past. There are
also a few minor things I could’ve spent a bit of time describing, but didn’t find warranted a place in this
post (mostly special transformations like linear transformations). Those holes aside, I hope this post was
informative enough for what it is.

My next post will be the final installment in this little random variables sub-series. It’ll focus on Markov
chains and should work as an ultra abridged introduction to all of the great topics that branch off from them
including stochastic processes and interesting statistical models like HMMs (hidden Markov models).
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