
Optimization Under Uncertainty
Online Optimization (Lecture 1)

Scribe: Elliot Pickens (eep58)

Omar El Housni
ORIE 6360: Optimization Under Uncertainty

Mar. 22, 2022

1 Online Algorithms
Let’s start off with the basic problem we’re trying to solve with online algorithms.

• We are faced with a sequence of uncertain parameters (requests) σ1, σ2, ..., σn, ...

– Which we assume to be fully adversarial i.e. each instance σ = (σ1, σ2, ..., σn, ...) is chosen in an
adversarial manner

• We are made aware of the requests one by one and need to satisfy each request σi before serving σi+1

– This differs from the situation faced by offline algorithms where the full sequence of arrivals is
known in advance.

Obviously, we are at a disadvantage when working in an online setting, because we are at an informational
disadvantage, but how wide is the gap?

Definition 1.1. We say that an algorithm is α-competitive if and only if maxσ
Alg(σ)
OPT (σ) ≤ α

Where

• Alg(σ) := the cost of the online algorithm

• OPT (σ) := the cost of the offline algorithm

1.1 The Ski Rental Problem
In the ski rental problem we know we’re going to head off on a ski trip, and that we can either buy skis for
some price B$ or rent skis for 1$ per day. We do not, however, know how many days we will actually spend
skiing. Put compactly,

• The number of ski days is unknown

• All you know is that each morning you will be told if the trip will continue

In the offline setting this problem is fairly straight forward, because you know the number of days you’ll
be skiing in advance. All you need to do is ask whether the number of ski days is less than B. If t > B you
buy on day 1 otherwise you rent every day. Thus,

OPT (t) = min(t, B) if t ≤ B you rent every day
if t > B you buy on day 1

1



The online setting is a little different. Since we don’t know t we can’t fully know our strategy on day
1. Instead let’s consider an instance t (# of ski days ). We can use the strategy: rent until day i and then
purchase the skis on the morning of day i you you’re told you’ll be skiing that day.

The cost of this approach is

Algi(t) =
{
t, if t < i

i− 1 +B, if t ≥ i

which means the online/online cost ratio is:

Algi(t)
OPT (t) = 1t<i + (i− 1 +B)1t≥i

min(t, B)

and if i = B,

AlgB(t)
OPT (t) = 1t<B + (2B − 1)1t≥B

min(t, B) =

1, if t < B
2B − 1
B

, if t ≥ B

Theorem: the competitive ratio of AlgB is 2− 1
B

and this is the best you can achieve with a deterministic
algorithm.

Let’s show that 2− 1
B

is a tight bound. Consider an online algorithm Algi for some 1 ≤ i ≤ B. Let t = i

(e.g. you break your leg the day you buy the skis). Then

Algi(i)
OPT (i) = i− 1 +B

min(i, B) =


i− 1 +B

i
, if i ≤ B

(
2B − 1
B

)
i− 1 +B

B
, if i > B

(
2B − 1
B

)
≥ 2− 1

B

so Algb is the best you can do.

Question: Can we do better by using randomized algorithms?

Maybe, depends on the problem - so let’s check for the ski rental problem.

1.1.1 Randomized Algorithms

A randomized algorithm is a distribution over a deterministic algorithm. Much like the deterministic
algorithms we’ve already described we can define the cost of a randomized algorithm θ as Ãlg(σ)for an
instance σ, and say that Ãlg is α-competitive if

max
σ

E

(
Ãlg(σ)
OPT (σ)

)
≤ α

where we’re taking expectation with respect to the algorithm and not the instance.
So what happens if we randomize the online algorithm we described in the last section (Algi where you

buy on the morning of day i)? To do this we can build out a table representing how different strategies fare
in different instances.

2



Competitive Ratio Table (B = 4)
Algorithm I1 I2 I3 I4
Alg1 4 4/2 4/3 1
Alg2 1 5/2 5/3 5/4
Alg3 1 1 6/3 6/4
Alg4 1 1 1 7/4

In the table we above we can see how each algorithm Algi performs for each instance Ii (where Ii := (t = i))
when B = 4. It’s clear that algorithm performance varies with each begin optimal under different conditions,
so what if we tried to combine them to a (weighted) average result?

To do this let’s assign a probability Pi to each Algi. Now we can find an average competitive ratio across
all strategies for each instance. With the table above, for example, we get the following:

4P1 + P2 + P3 + P4 ≤ α, for I1

2P1 + 5
2P2 + P3 + P4 ≤ α, for I2

4
3P1 + 5

3P2 + 2P3 + P4 ≤ α, for I3

P1 + 5
4P2 + 3

2P3 + 7
4P4 ≤ α, for I4

P1 + P2 + P3 + P4 = 1

Now, we just have to minimize α such that the system of equations above is satisfied (primarily by tuning
the Pi values). Then

⇒ α ≤ e

e− 1 for any B

and

1
1− (1− 1/B)B

≤ 1
1− 1/p = e

e− 1

2 Conclusion
In this lecture we covered the basics on online algorithms and explored some of the difficulties we face when
working in the online setting. We also touched upon how randomized algorithms might be able to help us
improve performance.

In the next lecture we will continue with online algorithms by looking at online matching.

3


	Online Algorithms
	The Ski Rental Problem
	Randomized Algorithms


	Conclusion

