
A Brief Exploration of Image Search Methods

Elliot Pickens
Cornell Tech

eep58@cornell.edu

Abstract

In this paper I approach the question "how can we return the best matching image
to a natural language query." I tried to answer that question through the lens of
machine learning by starting from a baseline regression model, and then building
up up to modern deep learning methods. I ultimately found that using CLIP
(Contrastive Language-Image Pre-Training) produced the best results.

1 Data

For this project I was given a rich data set containing 12,000 images split between training and test
sets. Each imagine was accompanied by a set of descriptions, tags, and extracted ResNet features.
There were approximately five descriptions and tags per image, but a small number had fewer than
five. The ResNet features were taken from the third to last layer of the model after being fine tuned
on the data and were in the form of a 1× 1000 vector.

2 Working With the Baseline

We were initially given a baseline model that used a 300 dimensional sentence embedding produced
by word2vec as the input data to a ridge regression method that was set to predict a 100 randomly
selected ResNet features. Despite the inherent stochastic-ity present in this method it actually
produced results that we not all that bad considering the difficultly of the problem. This method was
able to hit a MAPE score over 0.12. After inspecting this baseline I determined that before jumping
into more complicated approaches I should apply some minor modifications to the baseline.

2.1 Initial Tuning

The first of those modifications was swapping out ridge regression for a elastic net regression. I did
this to allow for a few additional tune-able parameters. The most important of which was the ability
to add some additional regularization by tuning the L1 and L2 ratio as well as the associated alpha
value. I wanted to add regularization early on to see it would help handle the high dimensional nature
of the data. It made a difference, increasing the performance of the model by a small amount, but it
was not enough to make a dramatic impact.

2.2 Boosting and PCA

The next step I took to improve upon the baseline was to remove the randomness caused by the
random ResNet feature reduction. To do this I replaced the randomized selection with PCA. I found
that PCA improved performance moderately.

At this point decided that it was time to move on from the initial regression model at the core of this
approach. I turned to XGBoost. XGBoost is a fast an efficient boosting algorithm that has a strong

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Early Results
Model Test (Kaggle) Score
ElasticNet 0.127
ElasticNet + PCA (n=100) 0.143
XGBoost + PCA (n=100) 0.173

track record of performance across a wide range of tasks. 1 I tested XGBoost on both the random and
PCA reductions of the ResNet features. Both had showed a reasonable boost in performance.

3 Diving Into Deep Learning

Although, I could have spent more time working with the initial boosting method and increasing its
performance I decided to take things in a different direction and employ a series of neural network
based models. My first attempt at this was to replace the regression model with a neural network
setup to do regression implemented in Pytorch. Sadly, this failed miserably. I attempted a number of
different approaches for this. First off was the simple neural network mapping description embeddings
directly to ResNet features. Of course, this introduced a very problematic scenario where I was trying
to fit a model f(X) = Ŷ ≈ Y where X is a n× p matrix and Y is a n×m matrix where m ≈ 3p.
Under such conditions it is difficult build a functioning model, so I quickly reduced the size of the
ResNet features using the PCA method described in the previous section as well as an autoencoder
method. I assumed the PCA method would result in a working model at the very least, but I was
much less certain about the autoencoder approach. Sadly, neither worked and they both registered
very poor performance.

Why did this happen? A few different reasons come to mind. First off is the model. I tried a number
of different configurations for the neural network I used to predict ResNet features from word2vec
encodings. I tried both increasing and decreasing its size as well as introducing various levels of
regularization through dropout and weight decay. I ended up with more or less the same result
regardless. These performance issues came as quite a shock. I was not doing anything particularly
differently than I had done during my initial exploration, and yet the results varied wildly from the
previous results. My suspicion is that even with added dropout layers and weight decay the model
was still over-fitting to the training data. I believe this to be the case due to the fact that the loss
during the training process (MSE) was very low and approached zero quite quickly, but MAPE on
the validation and test sets was nearly 0.

Following these results I moved to swap out the previous feature reduction via PCA with an autoen-
coder method. In retrospect moving to add an autoencoder my pipeline at this stage (having seen poor
results using PCA and direct mapping) was not a great idea, and one made out of confusion more
than anything but in the moment it made more sense. I tried training an autoencoder on the ResNet
features in order to find what would hopefully be a better way doing dimensionality reduction than
PCA. It was not. The autoencoder was unable to effective encode and decode the ResNet features
with any of the configurations I tested. Given the efficacy of PCA in doing decomposition I believe
this can be attributed to human error on my part. It was a good practice exercise, but not one that
improved the model.

All in all I don’t have a conclusive answer as to why these early deep neural network models did not
play out the way I expected. Had I had more time to run tests I think I would have figured out the
flaw in my approach, but with limited computational power I chose to cut my losses early and quickly
move onto my next approach.

3.1 Image Captioning

Despite these difficulties I did not choose to completely give up on incorporating some sort of deep
learning approach into the project. Rather than use a neural network as my model I shifted to consider
how I might be able to augment the data I had through existing pre-trained neural networks. Given the
recent rapid advances in natural language processing on vision language tasks it seemed like it could

1It also happens to be a favorite among Kaggle competition participants, so I thought it was only right to use
it as part of this project.

2



be a perfect match. If it would be possible to correctly caption the images in my data set then the core
then search performance could be drastically improved. Through this approach I would process every
image with a pre-trained network and then store every output caption. With those captions saved I
would then search for images using cosine similarity between description embeddings and caption
embeddings.

To do this I used HuggingFace’s vision language tools to put together a network that would take in
an image and output a caption. I employed the Vision Transformer (ViT) model as the image encoder
and GPT2 as the text decoder for this task. For this approach an image would be sent through the
encoder, which would output a sequence that the decoder would then decode as a caption.

Figure 1: Two Cats Captioned: "I don’t know if I’m going to be"

The model was able to caption images, but none of the captions were very good. One example image
caption pair can be seen in figure 3.1 above. Clearly it is not correct, and not anywhere close to
correct at that. I was surprised at just how badly the captions I got were, but not completely shocked.
It is not advised that pre-trained models be used directly on specific tasks and that showed to be very
true in this case. I had hoped that I would be able to properly tune this model locally on my machine,
but that proved to be too computationally expensive so I was unable to produce captions that were
worthy of use in my model.

4 CLIP

Having faced a solid number of discouraging results during my excursion into deep learning I was
almost ready to give up and return to the boosting method previously mentioned, but before quitting
on the methodology I gave it one last shot by turning to CLIP (Contrastive Language-Image Pre-
Training). CLIP has shown great performance on a number of tasks using an approach that directly
ties image and language data. The key to CLIP’s performance is its training cycle where paired
images and text descriptions are encoded and then decoded to train the network.2 Through this
approach CLIP learns to effectively encode both images and text. This works fantastically well and
lends itself to effective out of the box use. That single shot capability has the added benefit that it
makes for easy search retrival if you have both text and image embeddings. Once those are in hand
we can use tirhe dot product to get cosine similarity and then sort and select the best matches.

4.1 Pre-Trained CLIP

To use CLIP on the data provided for this project I used the pre-trained CLIP model provided by the
paper authors. Using that model I computed and saved the image embeddings for each image in the
train and test sets. I then cycled through each description and computed its text embedding. Each
image’s text embedding was then dotted with its image embedding and the resulting values were
sorted to find the top matches.

The implementation of CLIP provided by the original authors is not set up to quickly be tuned at the
moment, so I was not able to fine tune the model for this specific task. That being said, there was still

2I do not describe CLIP in great technical detail in this paper, but I might do so in a future blog post.

3



some room for creativity to maximize the results from the pre-trained model. In particular, I was able
to improve upon the most straightforward use of CLIP for image search on the data by modifying the
way descriptions were used by the model.

CLIP Results
Model Test (Kaggle) Score
Description Averaging 0.628
Full Description 0.684
Punctuation Removed 0.654
+ "This is" 0.689
+ "A photo of" 0.6898
Mixed Start Phrases 0.697

I first had to decide how to handle the multiple descriptions that were given for each image. At first I
tried taking the sum of the embeddings from each description and dotting the resulting vector with
the image encodings. I also tried doing the same thing using the mean of the individual description
text encodings. Both methods produced near identical results, which was to be expected given they
should be equivalent. After testing these methods I moved on to simply creating one embedding for
the entire description. This easily out performed the averaging method, which makes sense given that
many transformer based methods (like CLIP) benefit from using all possible context available. Once
I had confirmed that a single embedding was best I decided to play around with how I pre-processed
the text before encoding it. First, I tried adding, removing, and altering punctuation. None of these
alterations improved performance. I then decided to use a method discussed by the CLIP authors:
altering the beginning of the descriptions to make more explicit what was shown in the image. The
authors mention using phrases like "an image of," "a bad photo of," and "a corrupted jpg of." In their
package release, the authors present a more in depth mix of these precursor phrases and describe how
they can improve performance. I could not effectively re-train the model so I instead opted to add the
most generic of these phrases to each description. I started by adding "this is" to each sentence. It
resulted in a moderate bump in performance, so I moved on to tried adding "a photo of" along with a
few other starter phrases. I found that "this is" and "a photo of" worked best. I also tried mixing the
two and found that to be even more effective. I was able to do this by realizing that each description
began with "a..." meaning that a little additional info at the beginning of the sentence wouldn’t ruin
its meaning.

Although, I did not have the time to test anything other methods, I think it would also be interesting
to try expanding the available data in other ways. One that comes to mind is using a translation tool
to convert the descriptions to another language and then back to English. I know this trick has been
leveraged by others for similar tasks, so I seems plausible that it would work in this context

4.2 Baby CLIP

I was very impressed with how well CLIP performed on the data, but I wanted to further investi-
gate the method and learn more about its inner workings by adapting some existing open source
implementations of CLIP.

Using the framework of those implementations I trained two "baby" versions of clip on my laptop.
Both of these used DistilBERT as the text encoder, but one used ResNet50 as the image encoder
while the other used DiET distilled. Neither performed nearly as well as the actual CLIP model, but
it was interested to play around with the models and try to make some alterations and observe what
happened.

As we can see in the images in 4.2, neither of the "baby" CLIP models on trained on my laptop
performed very well. It looks like they’re just picking random images from a human perspective, but
they did appear to be learn something even if it is not intelligible here. If I were to give a particularly
generous interpretation of results I would say that DiET model appears to be retrieving some park
images, while the ResNet model returns some pictures of men. I think this is a bit of reach, but
there’s probably something going on there. If I were to run this again I would try to use an even larger
data-set, and run it for more than a single night to test the true performance of my altered version.

4



(a) ResNet Top 9 (b) ViT Top 9

Figure 2: Top 9 Images for "A man skateboarding in a park"

5 Conclusion

Figure 3: Tweet From @ResNetXtGuesser Showing a Comical Burger Classified as a Pineapple

All in all I think this project showed me both the power of, and the challenges associated with deep
learning. I was able to get some results on the test data that I found really quite astonishing, but I was
not able to do it using the computational power of my laptop alone. I had to rely on the power of a
lab with the budget needed to hire researchers and train massive models like CLIP that I ultimately
settled on for this project. Comparing the early regression models, with my initial neural networks,
and both real and "baby" CLIP I think it is also possible to see how hard it is to achieve state of the
art performance on tasks involving language and vision. I think the meme above encapsulates this
perfectly, showing just how hard even a "basic" labeling task can be.

It was a great learning experience and I was able to greatly improve upon my Pytorch abilities
through all of the trouble shooting needed to get things working. I cannot wait until I get a chance to
work on another great project like this!

5



6 Works Cited

• An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale
• BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding
• Learning Transferable Visual Models From Natural Language Supervision

– https://github.com/openai/CLIP
– https://github.com/moein-shariatnia/OpenAI-CLIP
– https://github.com/haltakov/natural-language-image-search

• https://huggingface.co/docs/transformers/model_doc/visionencoderdecoder
• Attention Is All You Need
• https://xgboost.readthedocs.io/en/stable/
• https://huggingface.co/docs/transformers/model_doc/vit

Please forgive the informal list of references.

6


	Data
	Working With the Baseline
	Initial Tuning
	Boosting and PCA

	Diving Into Deep Learning
	Image Captioning

	CLIP
	Pre-Trained CLIP
	Baby CLIP

	Conclusion
	Works Cited

