
Hidden Markov Models
Elliot Pickens Bata-Orgil Batjargal

January 17, 2020

Abstract

Following in the footsteps of many quantitative funds, in this paper we demonstrate how Hidden
Markov Models can be used to predict future states of the financial market. Using a Hidden Markov
Model, we analyzed Goldman Sachs Group’s closing price from Jan 1, 2016, through Dec 31, 2018. We
trained our model on the most recent 875 trading days and then tested our model by predicting the states
associated with 220 holdout days not used for the training process. First, we defined three possible market
states (stagnant, bull, or bear). Then we used the forward-backward algorithm to learn the parameters of
a Hidden Markov Model starting from a set of approximate initial probability, transition, and emission
matrices.

1 Background
Hidden Markov Models (HMM) are probabilistic models based on simple two assumptions. The first
assumption and namesake of the model is the Markov assumption that only the present state is relevant
when predicting the future. In other words, in a sequence of states q1, q2, ..., qi−1, the next state(qi) is
only dependent on the preceding state (qi−1) [3]. We can abstract the assumption with,

Markov Assumption: P (qi|q1...qi−1) = P (qi|qi−1). (1)

The second assumption is output independence, which states that each observation is solely a result
of the current un-observable state of the system. That is to say that each piece of data we possess is
assumed to only occur as a result of the contemporary state of the system. For example, if we were trying
to understand the the previous summer’s weather patterns using some form of indirect data (like the
amount of ice cream a friend consumed each day) the state of the weather on a given day would only be
dependent on the level of ice cream consumption on that same day. Formally, output independence can
be written as:

Output Independence: P (oi|q1...qi...qT , o1...oi...oT) = P (oi|qi). (2)

HHMs build upon more conventional Markov models using of hidden (latent) variables and recursive
algorithms. With these latent variables, we can learn about the probabilities associated with a sequence of
observed states. When implemented, HMMs ultimately take the form of matrices representing transition
probabilities from state i to state j (aij), observation probabilities (bo) for each state with the help of se-
quences of observations (ot), initial probability distribution(π), and states (qt) that caused the observations.
These matrices are learned though a training process that tries to select the transition matrix (A), ob-
servation probability matrix (B), and initial probability distribution (π) that best explain the observations.

1.1 Markov Models
With the Markov assumption, we can construct Markov models using the following components: a set of
states (Q = q1q2...qN), a transition probability matrix (A = a11a12...an1...amn), and an initial probability
distribution (π = π1, π2, ..., πN) [3].

1

1.1.1 An Example Markov Model
In this section, we will explore how the Markov assumption can be used to define a model based on the
example Markov chain shown in Figure 1.

Figure 1: Graphical Representation of a Transmission Matrix for Market States where arrows stands for the
probability to transition from one state to another[4]

For Figure 1, we can define a transition matrix P , where each state’s transition probabilities are
defined in a row vector. For example, P (1, 1) represents the probability of transitioning to bull, P (1, 2) to
bear, and P (1, 3) to stagnant markets.

P =

[0.9 0.075 0.025
0.15 0.8 0.05
0.25 0.25 0.5

]
. (3)

If we represent each state as a row vector x, with the relation x(n+1) = x(n)P . Then the state in
(n+ 3) is

x(n+3) = x(n+2)P =
(
x(n+1)P

)
P

= x(n+1)P 2 =
(
x(n)P

)
P 2

= x(n)P 3

. (4)

For example, if the system is in state 2 (bear) at time n, then at time n+ 3 the updated distribution
is:

x(n+3) =
[
0 1 0

][0.9 0.075 0.025
0.15 0.8 0.05
0.25 0.25 0.5

]3

=
[
0 1 0

][0.7745 0.17875 0.04675
0.3575 0.56825 0.07425
0.4675 0.37125 0.16125

]

=
[
0.3575 0.56825 0.07425

]
.

(5)

From the above, we can see that the state is most likely to still be in the bear market with 0.57
probability at time n+ 3[4].

1.2 Hidden Markov Models Foundations
Markov models can be quite useful (as can be seen in section 2.1.1). However, they are handy when we
can fully observe a sequence of events, and their causes are also a hidden sequence of events that we want

2

Figure 2: An example state emission sequence where x is the states that caused y observations[3]

to investigate.

Building on the foundations elements of Markov models (a set of states (Q = q1q2...qN), a transition
probability matrix (A = a11a12...an1...amn), and an initial probability distribution (π = π1, π2, ..., πN)),
HMM make use of a sequences of observations (O = o1o2...oT) and observation probabilities (B = bi(ot))
to answer questions about the hidden events.

These five parts of the HMM are then glued together with the Markov assumption and an assumption
of output independence. With them, we can now begin to think about how we might be able to discover
hidden states that caused our sequence of observations. That discovery process (the essential task of an
HMM) is covered in the following sections:

• Likelihood: Determine the likelihood P (O|λ) of a set of observations O, given an HMM λ = (A,B)
• Decoding: Discover the most probable sequence of hidden states Q given O & λ

• Learning: Learn the parameters A & B of λ given O & Q

1.2.1 Likelihood: The Forward Algorithm
The forward algorithm is used to find the likelihood that a sequence of observations occurred for a given
HMM λ. For example, if we do not know which hidden states were present and we want to find the
probability that the observations o1, o2, ..., on occurred we need to use the forward algorithm. That is
to say, that in its most basic form the forward algorithm is used to find the likelihood of a given state
happening at a given time.

Figure 3: Forward Algorithm Diagram[3]

In order to find the likelihood of our observations O we need to first be able to find the probability
that j is the tth state following the first t observations and our HMM λ. We can find that probability
value (denoted αt(j)) following all of the paths that could lead to state j and totalling their probabilities.
This probability is commonly written as:

αt(j) = P (o1, o2, ..., ot, qt = j|λ) (6)

3

To calculate αt(j) the forward algorithm takes a pseudo-recursive approach (using dynamic program-
ming) by summing over all paths that lead to the state j. This can be computed as

αt(j) =
∑
i=1

αt−1(i)aijbi(ot). (7)

1.2.2 Decoding: The Viterbi Algorithm
During the decoding process, we want to find the most probable sequence of hidden states given a set of
observations and our HMM λ. For example, say we want to know whether a single day (in a series of
days) was hot or cold based on the number of ice cream cones a friend of ours consumed on each day in
the series. With the Viterbi algorithm, we can find the most likely set of hidden states (heat levels) given
our observations (ice cream cones eaten).

Figure 4: Viterbi Algorithm Diagram[3]

Given that we already have the forward algorithm it is tempting to consider simply applying it to all
possible hidden state sequences and select the most probable one. The difficulty with such an approach is
that its branching nature causes its computational complexity to grow exponentially with the number
of observations. The Viterbi Algorithm drastically reduces the number of computations required by
just calculating the maximum probability at each fork in the graph, as can be seen in Figure 4. The
value associated with each state j at time t can be expressed as follows (by assuming we select the most
probable state at each junction)

vt(j) = max
i
vt−1(i)aijbi(ot). (8)

Like the forward algorithm, the Viterbi algorithm is a dynamic programming algorithm that recursively
fills out its cells. Thus, at each step we have already calculated the probability of landing in each possible
state during the previous time step and we can compute the probability of a state qt as

vt(j) = Nmax
i=1

vt−1(i)aijbj(ot) (9)

1.2.3 Learning: The Forward-Backward Algorithm
During the learning phase our goal is to find the transition (A) and observations (B) matrices that best
maximize the probability p(O|λ). To maximize this value we will essentially formulate the problem as

4

maximum likelihood estimation. Such an MLE calculation is, however, very difficult to solve directly.
To avoid the analytic difficulty of the problem we will use a form of the expectation maximization algorithm.

To setup this version of the EM algorithm we will first define transition probability aij (1) as the
expected number of transitions from state i to state j divided by (2) expected number of transitions from
state i. Also, let’s define observation probability bj(vk) (3) as the expected number of passes through
state j and observing symbol vk divided by the expected number of passes through state j (4).

Since the forward-backward algorithm is a case of the EM algorithm it consists of two steps: the
expectation step where we calculate the expectation values (1), (2), (3), and (4) and the maximization
step where we calculate aij and bj(vk).

Figure 5: Forward-Backward Pseudo Algorithm[3]

In the expectation state we calculate the probability of being in state i at time t and state j at time
t+ 1. Then we find the probability of being at each state j at each time t. So we calculate the backward
probability that tells us if the current state will be j at time t+ 1 and the likelihood of observing the
remainder of the sequence up to time T . We also calculate a forward probability (using the Forward
algorithm) to find the likelihood of being in the state i at time t (as we can see in Figure 6). In other
words, Forward-backward probability, given the transition and observation matrices, is the probability
of observing both future observations and past observations up to a time t (where i and j occurred
consecutively).

P (forward− backward)t(i, j) = αt(i)aijbj(ot+1)βt+1(j)[3] (10)

The forward-backward probability can be expressed as P (X,Y |Z), where Z denotes the transition
and observation matrices we are learning, X is observation where state i and state j were consequent, and
Y is set of observations. We are interested in P (X|Y,Z) because we want to know the likelihood of a
transition from state i to state j. Following the laws of the probability, we can write

5

P (X|Y,Z) = P (X,Y |Z)
P (Y |Z) [3] (11)

Considering P (Y |Z) is the probability of seeing the observations given the matrices being learned it is
product of the forward and backward probabilities (equaling to

∑N

j=1 αt(j)βt(j)). So, we can calculate
expected number of transitions from state i to state j (1) as

ξt(i, j) = αt(i)aijbj(ot+1)βt+1(j)∑N

j=1 αt(j)βt(j)
.[3] (12)

Figure 6: Forward-Backward Algorithm Diagram[3]

Furthermore, the probability of being in state j at time t can be expressed as

γt(j) = P (qt = j|O, λ) = P (qt = j, O|λ)
P (O|λ) (13)

Since P (qt = j, O|λ) is a product of the forward and backward probabilities, we can write

γt(j) = αt(j)βt(j)
P (O|λ) .[3] (14)

Now with the variables needed to find aij and bj(vk) defined we can solve for the remaining vari-
ables in the forward-backward algorithm. The expected number of transitions from state i (2) is∑T −1

t=1

∑N

k=1 ξt(i, k). The expected number of passes through state j and observing symbol vk (3) is∑T

t=1s.t.Ot=vk
γt(j). Finally, the expected number of times in state j (4) is

∑T

t=1 γt(j). In Figure 5, we
can see how all of these come together synchronously to learn aij and bj(vk).

6

Figure 7: Asset Closing Prices

2 Methods
2.1 Set-up
We plan to analyze a single financial asset over a significant time frame (three years of daily data), using
the daily closing prices for the asset we wish to analyze and a basket of related assets. With three years
of data, we have over 1000+ observations (with 5-10 emissions (data points) per observation). Overall
our data should be a large ∼ 1000× 10 matrix. It should be noted, however, that for this project, we will
only use a single feature in our data matrix to build our model (leaving us with a ∼ 1000× 1 matrix).
We chose to use a single feature data matrix to keep things in line with the theory we laid out in the
previous section (in which we had only a single hidden state influencing each emission), but it is possible
to expand the work done in the previous sections in order to create HMMs with multiple emissions per
hidden state (i.e., P (oi|qi)→ P (oi1, oi2, ..., oin|qi))[2].

Using the investpy Python package, we wrote a simple script that pulls publicly available stock
market data from the web. With our script in hand we retrieved nine years worth of price data for 6
major publicly traded banks that we expect may be related in some way, since pulling the data of other
major financial institutions could improve our model of a given bank’s stock price)1.

Having pulled all necessary data, we formatted the data and created extra features we thought might
be helpful using Python’s pandas2. pandas also allowed us to export our data into a simple CSV file that
can be read in both Python and Matlab.

2.2 Procedure
When working with financial time series, we can imagine using an HMM to predict which state
s ∈ {bear, bull, stagnant} an asset is going to move into based on its current state, or predicting
the current state underlying the market.

In order to use such an HMM, we first had to train it using our data. To do this, we extracted a daily
closing price for Goldman Sachs and then split the series into the train, test, and validation sets using the
pandas package3. We then converted the data in each of the sets into sequences of observations suitable
for an HMM. In our case, each observation was either a 1 (if the difference between the current day’s
price and previous day’s was > 0) and 0 otherwise[1].

We then applied the forward-backward algorithm to our training set to learn our A, B, and π. For
this project, we used Python’s hmms package to learn and use our HMM4. As was previously stated in

1The six banks we pulled data for are: Goldman Sachs, the Bank of America, Citigroup, J.P. Morgan, Morgan Stanley, and
Wells Fargo

2We created three extra features for each stock (fractional change, fractional low, and fractional high)
3We chose to use the Goldman Sachs closing price because it is the most variable of the six series we pulled
4The hmms is fast and easy to use package, but almost completely lacks documentation and appears to have lost support so

we would not generally recommend using it for HMM tasks. For those interested in using HMMs in Python, we would suggest

7

section 1.5, the forward-backward algorithm tends to become stuck in a local optimum and fails to learn a
truly effective HMM. There are several ways to avoid this issue and find a useful model, but we chose to
take a somewhat rough guess and check approach for this project. More specifically, we ran the forward-
backward algorithm a number of times on our training set and selected the model that gave us the best
results using the forward algorithm (the HMM that gave the highest probability of our observations occurs).

Figure 8: Predicted States for the Training Set (GS Closing Price)

Finally, we used our model to predict the states underlying our data using the Viterbi algorithm. We
also predicted the sequence of underlying states that produced the test and validation sets using our HMM
and the Viterbi algorithm to see how well our model performed on data not seen during the training process.

3 Results

Figure 9: Predicted States for the Validation Set (GS Closing Price)

The model we trained using over two years of daily trading data appears to approximate the state
sequence with reasonably good accuracy, but it has several flaws. These flaws are not, however, unexpected.
As mentioned in section 2.2, we trained our HMM to find the states {bear, bull, stagnant} using only
a single sequence of observations that were constrained to only two emission levels {0, 1}. Given these
constraints, we cannot expect to have a particularly refined model, but we believe our results are promising
and could easily be improved with further model tuning and increased complexity (i.e., the addition of
extra states, emission levels, or observation sequences).

taking a look at the hmmlearn package

8

3.1 A Quick Note on Matlab
We used Python for a significant portion of this project because the library support for Python allowed
us to "semi-manually" implement an HMM without having to write all necessary functions from scratch.
However, we could have more easily done this project in Matlab using the HMM functions built into
Matlab’s Machine Learning and Statistics library. We only chose to use Python to build our stock price
model, because we wanted to tinker with the functions in a way that is not possible using Matlab’s locked
down libraries.

3.2 Discussion/Further Applications
Throughout this paper, we have discussed how HMM can be used to find a sequence of hidden states given
a set of observations. While that is the fundamental task of HMM, it should be noted that once we have our
A, B, and π we can also use our model to make predictions. Predictions can be made by using our transi-
tion and transmission matrices to find the most probable next step in our sequence, given our current state.

We can also use the information gained by our HMM to inform other models that may have a better
predictive capacity. For example, we could feed a sequence of predicted of states into another statistical
learning algorithm as a series of one encoded variables, which the algorithm could use to (hopefully)
better approximate the trends in our data[5].

Future prediction is, however, a secondary task of HMM and generally a secondary concern to those
using HMM5. The most successful contemporary applications of HMM can be found in speech recognition
and bioinformatics[3][6]. In both bioinformatics and speech recognition, many tasks require the discovery
of a sequence of states, rendering them well suited to HMM. In speech recognition, for example, we can
imagine a series of audio clips being defined as our observations and the words that produced them being
the underlying states.

4 Conclusion
The hidden Markov model is a powerful tool in time series analysis, especially when we believe there may
be an underlying pattern (or series of states) affecting our series.

With three reasonably simple algorithms (forward, Viterbi, and forward-backward), we can convert a
basic Markov model into an HMM capable of finding hidden states. The forward algorithm allows us to
evaluate sequences of observations to check either the likelihood of their occurrence or evaluate how well
a given HMM is fit to a sequence of observations. The Viterbi algorithm gives us the ability to predict
which states underpin our observations by selecting the most likely set of states given an HMM λ. Finally,
the forward-backward algorithm lets us fit an HMM to a sequence of observations by repeatedly updating
our model’s parameters via a particular case of the expectation-maximization algorithm that employees
forward and backward probabilities.

The efficacy of HMM can be seen in our simple example where we fit an HMM to stock market data
in order to find the hidden market states. With just a simple model consisting of three possible states
and two possible observation values, we were able to build a capable (if flawed model). Our constrained
example shows the power held by a relatively un-tuned collection of three matrices.

References
[1] Danish A. Alvi. Application of Probabilistic Graphical Models in Forecasting Crude Oil Price.

Papers 1804.10869. arXiv.org, Apr. 2018. url: https://ideas.repec.org/p/arx/papers/
1804.10869.html.

[2] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.
5At least as of December 2019

9

https://ideas.repec.org/p/arx/papers/1804.10869.html
https://ideas.repec.org/p/arx/papers/1804.10869.html

[3] Dan Jurafsky and James H. Martin. Speech and language processing : an introduction
to natural language processing, computational linguistics, and speech recognition. Upper
Saddle River, N.J.: Pearson Prentice Hall, 2009. isbn: 9780131873216 0131873210. url:
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/
ref=pd_bxgy_b_img_y.

[4] S.P. Meyn and R.L. Tweedie. Markov Chains and Stochastic Stability. London: Springer-Verlag,
1993. url: /brokenurl#probability.ca/MT.

[5] Nguyet Nguyen. “Hidden Markov Model for Stock Trading.” In: International Journal of
Financial Studies 6.2 (2018), pp. 1–17. url: https://EconPapers.repec.org/RePEc:gam:
jijfss:v:6:y:2018:i:2:p:36-:d:138097.

[6] Maria Servitja Robert. “A First Study on Hidden Markov Models and one Application in
Speech Recognition.” In: (2016), pp. 1–51.

10

http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
http://www.amazon.com/Speech-Language-Processing-2nd-Edition/dp/0131873210/ref=pd_bxgy_b_img_y
/brokenurl#probability.ca/MT
https://EconPapers.repec.org/RePEc:gam:jijfss:v:6:y:2018:i:2:p:36-:d:138097
https://EconPapers.repec.org/RePEc:gam:jijfss:v:6:y:2018:i:2:p:36-:d:138097

	Background
	Markov Models
	An Example Markov Model

	Hidden Markov Models Foundations
	Likelihood: The Forward Algorithm
	Decoding: The Viterbi Algorithm
	Learning: The Forward-Backward Algorithm

	Methods
	Set-up
	Procedure

	Results
	A Quick Note on Matlab
	Discussion/Further Applications

	Conclusion

