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1 Intro
Today I’ll be talking about moments. I discussed expectation and variance in a couple of recent posts and
both are great ways to describe a distribution, but they aren’t the only options out there. I wouldn’t describe
moments as an alternative, but they are a great addition to your statistics toolkit.

2 What is a Moment?
If we have a random variable X and a positive integer k then E(Xk) is the kth moment of X. The mean
is the first moment, but certainly not only one. In fact, it is quite possible that a distribution will have a
countable number of moments. This is true for all bounded random variables (where P (a ≤ X ≤ b) = 1 for
some finite a, b). But it’s also possible that the moments exist for unbounded random variables.

That’s a little too ambiguous of a statement, so let’s get into some details starting with existence. The
moment of a distribution exists if E(|X|k) <∞. And if E(|X|k) <∞ for some k then the moment also exists
for all 0 < j < k. To show this let’s assume we have some continuous RV X with a pdf f . For some j the jth

moment is then

E(|X|j) =
∫ ∞
−∞
|x|jf(x)dx (1)

=
∫
|x|≤1

|x|jf(x)dx+
∫
|x|>1

|x|jf(x)dx (2)

=
∫
|x|≤1

1 ∗ f(x)dx+
∫
|x|>1

|x|kf(x)dx (3)

= P (|X| ≤ 1) + E(|X|k) (4)

since E(|X|k) <∞ then P (|X| ≤ 1) + E(|X|k) <∞ and the jth moment exists.

2.1 Central Moments
If we have an RV for which E(X) = µ then E((X − µ)k) is the kth central moment (or moment about the
mean) of X for all positive integers k. By definition the first moment must be zero and the second moment is
variance.1

Aside from variance, another central moment of interest is skewness. Skewness is defined as E((X−µ)3)/σ3

and is used to describe the symmetry of a distribution.2 For a symmetric distribution the skewness will be
zero, but for all non symmetric distributions skewness with be non zero.

1If the distribution is symmetric then all odd moments about the mean will be zero (so long as they exist)
2The σ3 is used to normalize the moment to isolate for symmetry and non the spread of a distribution
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3 Moment Generating Functions
We can use moments to describe a distribution by using a moment generating function of mgf. We define
such a function as

ψ(t) = E(etX) (5)

where ψ(t) is the mgf of X.
As was the case with both variance and expectation, the mgf of a random variable depends on its

distribution alone. These functions also related to the moments of a distribution themselves. Although
E(Xk) 6= E(etX), the bounded-ness of a random variable has a similar effect to what was described in 2.

But why would we want to use one of these? At first glance a moment generating function doesn’t appear
to have much in common with moments themselves, but it turns out that after a little work we can use them
to do generate the moments of a random variable. To be more specific, on an open interval about 0 for which
all values of t within the interval result in ψ(t) being finite, the nth derivative of ψ(t) equals the nth moment
of X and is finite at t = 0. That is,

E(Xn) = ψ(n)(0) (6)

for n ≥ 1, n ∈ Z.

3.1 Properties of MGFs
3.1.1 Linear Functions

Let’s say we have two random variables X, Y where Y = aX + b with corresponding mgfs ψ1 and ψ2. Then
for each t where ψ1(at) is finite, we can expand out ψ2 using the definition of an mgf as

ψ2(t) = E(etY ) (7)
= E(et(aX+b)) (8)
= ebtE(eatX) (9)
= ebtψ1(at) (10)

thus, ψ2(t) = ebtψ1(at).

3.1.2 Independent RVs

Assume we have a number of independent random variables X1, ..., Xn with mgfs ψ1, ..., ψ2. Then if we
construct a new random variable Y = X1 + ...+Xn whose mgf is ψ we know

ψ(t) = E(etY ) (11)
= E(et(X1+...+Xn)) (12)

= E(
n∏

i=1
etXi) (13)

=
n∏

i=1
E(etXi) (14)

=
n∏

i=1
ψi(t) (15)

So we have that ψ(t) =
∏n

i=1 ψi(t).
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3.1.3 Uniqueness of MGFs

If a pair of mgfs share a several properties then we can infer whether the distributions that define said mgfs
are the same. More precisely, we can say that if a pair of mgfs are both finite and identical on an interval
about t = 0 for every possible value of t then the distributions of the random variables behind the mgfs are
identical.

4 Conclusion
In this post I only barely touched upon moments. There are plenty more things that can be said about them,
and many more ways they can be used. I’ve chosen to keep this post short, so that I can move on to other
things but it is likely that moments will come up again at some point in the future. They show up all over
the place from descriptive statistics to MOM (method of moments) for model fitting.

Before I get around to that, however, I’m going to try and close out my set of posts on expectation. Next
up: covariance.
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