
Expectation Pt. 3
Properties of Expectation

Elliot Pickens

Jul 19, 2021

1 Intro
In this post I’ll cover a few important properties of expectation. I my previous post (expectation pt. 1) I laid
out the basics, but without understanding of a few additional properties it can be difficult to apply those
definitions. Hopefully this post will help with that.

2 Properties
2.1 Linear Functions
To begin let’s take a look at the expectation of a random variable Y defined as a linear function of another
random variable X as Y = aX + b. Then the expectation of Y is

E(Y ) = aE(X) + b (1)

since1

E(Y ) = E(aX + b) =
∫ ∞
−∞

(ax + b)f(x)dx =
∫ ∞
−∞

axf(x) + bf(x)dx (2)

= a

∫ ∞
−∞

xf(x)dx + b

∫ ∞
−∞

f(x)dx (3)

= aE(X) + b (4)

2.2 Other Basic Theorems
Due to a jumbling of the originally intended order of my posts I realized that I referenced a few minor details
about expectation in my previous post on variance. The theorems below should help fill in some of those
details. I will, however, only be showing the continuous cases for these theorems for the sake of brevity given
that the ideas are identical after replacing

∫∞
−∞ with

∑
All x.

First off we can say that if we have a random variable X for which P (X ≥ a) = 1 then E(X) ≥ a.
Conversely if P (X ≤ b) = 1 then E(X) ≤ b. We can see this by applying two inequalities to the expectation
calculation. For the greater than case

E(X) =
∫ ∞
−∞

xf(x)dx =
∫ ∞

a

xf(x)dx (5)

≥
∫ ∞

a

af(x)dx = a (6)

and for the less than case
1The explanation in 2 is for the continuous case, but for the discrete case we can follow the same argument after replacing

integrals with sums over all x.
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E(X) =
∫ ∞
−∞

xf(x)dx =
∫ b

−∞
xf(x)dx (7)

≤
∫ b

−∞
bf(x)dx = b (8)

We can use this result to show a few other things like that P (X = a) = 1 if E(X) = a and either
P (X ≥ a) = 1 or P (X ≤ a) = 1. Plugging things in we get

E(X) = a =
∫ ∞
−∞

xf(x)dx =
∫ ∞

a

xf(x)dx (9)

≥
∫ ∞

a

af(x)dx = a (10)

for the P (X ≥ a) = 1 case. Since the inequality above must actually be a strict equality then we know that
P (X > a) = 0, because

∫∞
a

xf(x)dx =
∫∞

a
af(x)dx. Therefore P (X = a) = 1.

The opposite direction is much the same, as for P (X ≤ a) = 1 we get

E(X) = a =
∫ ∞
−∞

xf(x)dx =
∫ a

−∞
xf(x)dx (11)

≤
∫ a

−∞
af(x)dx = a (12)

which implies P (X < a) = 0 (due the equality being strict) and P (X ≤ a) = 1.

2.2.1 Linearity of Expectation

If we have a number of random variables X1, ..., Xn then the expectation of their sum E(X1 + ... + En) =
E(X1) + ... + E(Xn). To sketch the proof of this let’s take a look at the sum of two random variables. The
expectation of the sum of two random variables is

E(X1 + X2) =
∫ ∞
−∞

∫ ∞
−∞

(x1 + x2)f(x1, x2)dx1dx2 (13)

=
∫ ∞
−∞

∫ ∞
−∞

x1f(x1, x2)dx2dx1 +
∫ ∞
−∞

∫ ∞
−∞

x2f(x1, x2)dx1dx2 (14)

=
∫ ∞
−∞

x1f(x1)dx1 +
∫ ∞
−∞

x2f(x2)dx2 (15)

= E(X1) + E(X2) (16)

Using this result we can state that the base case of an inductive proof is E(X1) = E(X1). We want to show
E(X1 + ... + Xn) = E(X1) + ... + E(Xn), so let’s put it in the form of the two RV case as

E(X1 + ... + Xn) = E(Xn +
n−1∑
j=1

Xj) (17)

= E(Xn) + E(
n−1∑
j=1

Xj) (18)

where E(
∑n−1

j=1 Xj) is the n− 1th case.
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This is a bit of an interesting result, because it implies that the expectation of the sum of random variables
is equal to the sum of their individual expectations even when the RVs are not independent. The fact that
we can forego the joint distribution and use the marginal distributions is a neat detail to note.

Combining this with 1 we get that

E(a1X1 + ... + anXn + b) = a1E(X1) + ... + anE(Xn) + b (19)

2.3 Products of Independent Random Variables
For n independent random variables X1, ..., Xn where E(Xi) is finite ∀ i the expectation of their product is

E

(
n∏

i=1
Xi

)
=

n∏
i=1

E(Xi) (20)

To show this let f be the joint distribution of X1, ..., Xn and fi be the marginal distribution of each Xi. Then
by independence we can say

f(x1, ..., xn) =
n∏

i=1
fi(xi) (21)

∀ points (x1, ..., xn) ∈ Rn. Thus,

E

(
n∏

i=1
Xi

)
=
∫ ∞
−∞
· · ·
∫ ∞
−∞

(
n∏

i=1
xi

)
f(x1, ..., xn)dx1 . . . dxn (22)

=
∫ ∞
−∞
· · ·
∫ ∞
−∞

(
n∏

i=1
xifi(xi)

)
dx1 . . . dxn (23)

=
n∏

i=1

∫ ∞
−∞

xifi(xi)dxi (24)

=
n∏

i=1
E(Xi) (25)

2.4 Non-Negative Random Variables
2.4.1 Integer Valued Random Variables

For integer valued random variables we can say that

E(X) =
∞∑

n=1
P (X ≥ n) (26)

To show this let’s inspect its expectation

E(X) =
∞∑

n=0
nP (X = n) =

∞∑
n=1

nP (X = n) (27)

We can write out this sum as

P (X = 1) P (X = 2) P (X = 3) . . .
P (X = 2) P (X = 3) . . .

P (X = 3) . . .
(28)

By shifting the direction of our summation (from column-wise to row-wise) we can see that

3



∞∑
n=1

nP (X = n) =
∞∑

n=1
P (X ≥ n) (29)

Therefore,

E(X) =
∞∑

n=1
P (X ≥ n) (30)

2.4.2 General Non-negative Random Variables

As a minor note, for a non-negative random variable with a cdf F its expectation is

E(X) =
∫ ∞

0
[1− F (x)]dx (31)

3 Conclusion
I don’t have much to says about the theorems presented in this post other than that they are quite useful
and crop up often in just about any work where probability is heavily used. For that reason this post is
something of a reference more than anything.

In my next installment of this series I’ll get back on track and start on what I said I would: moments!
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