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1 Intro

I’ve recently been looking back on some old probability notes for a project I hope to embark on during the
coming weeks and started thinking: "maybe I should reproduce these notes and put them up online." There
are obviously thousands upon thousands of explanations of all aspects of probability out there and I doubt
this one will be much better than any of those, but even if this document just helps a few others (or my
lonesome self) I think it’s a worthwhile endeavor.

Today I’m going to start off what may or may not develop into a series on the fundamentals of probability.
I’ll be skipping the foundational counting/combinatorial rules and jumping right into conditional probability.

2 Conditional Probability

One deceptively hard question to answer is how exactly the probability of one event informs another. It’s the
sort of question we ask ourselves all the time - and often more often than not get quite wrong. That’s in part
due to the incredible uncertainty present is each and every one of our daily lives, but also because we often
fail to employ the rules of conditional probability when talking about the world around us.

Conditional probability is the probability that some event A will occur given an event B has already
occurred. The difficulty in coming up with a way to calculate this value (denoted Pr(A|B)) is that we can’t
arrive at it by simply multiply probabilities together. Instead we have to consider how one event updates our
chances of the second taking place. One way to imagine this is by considering how both A and B lie within
some arbitrary sample space. We can think of A and B as blobs floating at fixed positions within the space
and potentially overlapping one another. The definition of Pr(A|B) comes directly from that overlap. Since
event B has already happened we know that we’re stationed somewhere within the blob defined by B, so then
our question becomes: "if we’re already in B then what’s the probability that we’re in the portion of B that
overlaps with A." The overlap of two events is their intersection or Pr(A ∩B) and the probability of being in
B is Pr(B), so the definition of conditional probability becomes the ratio of the intersection over the totality
space taken up by B or:

Pr(A|B) = Pr(A ∩B)
Pr(B) (1)
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A Quick Example

What’s the probability that we’ve drawn a card with a numeric value given we know we’ve drawn a
spade? Well we know that there are 13 spades in a deck and 52 cards total so chance of drawing a spade
or Pr(spade) is 13

52 . We also know that 9 of the 13 spades have numeric value so Pr(spade∩numeric) =
9

52 . Therefore by the definition of conditional probability we laid out above the chances of drawing a
numeric card given we know we have a spade is 9

52 / 13
52 = 9

13 , which just so happens to be equal to the
probability of drawing a numeric card in general since we have equal chances of drawing any one face.

Now that we’ve pinned down the basics of conditional probability let’s lay out a few specifics.

First off we should make sure to remember that conditional probabilities are at their core still probabilities.
That is to say that the basic rules we would follow elsewhere still apply here. For example, compliments work
just as they would regularly, leading us to Pr(Ac|B) = 1− Pr(A|B).1

Another thing that’s interesting to consider and potentially insightful is that sometimes we can solve for
more complex conditional probabilities by splitting them up into a series of smaller calculations. We can sum
this up using the following equation describing how things work with a intersection of many events:

Pr(A1 ∩A2 ∩ ... ∩An|B) = Pr(A1 ∩A2 ∩ ... ∩An ∩B)
Pr(B) (2)

= Pr(A1 ∩B)
Pr(B)

Pr(A1 ∩A2 ∩B)
Pr(A1 ∩B) ...

P r(A1 ∩A2 ∩ ... ∩An ∩B)
Pr(∩A2 ∩ ... ∩An−1 ∩B) (3)

= Pr(A1|B)Pr(A2|A1 ∩B)...P r(An|A1 ∩A2 ∩ ... ∩An−1 ∩B) (4)

Possibly more importantly we can take advantage of the subtle ambiguity associated with Pr(A|B) in
equation 1 to get the following result:

Pr(A ∩B) = Pr(A|B)Pr(B) (5)

= Pr(B|A)Pr(A) (6)

The simple equality above holds a great deal of power. Much of which will be explained in later posts
specifically addressing Bayes’ Theorem, but its utility shows up even in small details like the interaction
between conditional probability and partitions.

If we have a series of events that can be used to form a partitions of a space then we can use the equality
in equation 6 to find the probability of any other event within the space using the sum:

Pr(A) =
n∑

i=1
Pr(A|Bi)Pr(Bi) (7)

1This can be shown by considering that since B has occurred we have effectively reduced our sample space to just the portion
of the total space that contains B
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Since we know from basic union and intersection rules that:

A = (B1 ∩A) ∪ (B2 ∩A) ∪ ... ∪ (Bn ∩A) (8)

There are a number of other small results that can be similarly derived, like a conditional probability
based version of the law of total probability, but I’m not particularly interested in those right now, so I’m
going to leave them out of this write up.

2.1 Independence and Conditional Probability

First let’s begin with a definition of independence. We can say that two events are independent if:

Pr(A ∩B) = Pr(A)Pr(B) (9)

Independence is at the core of many probability calculations. Without it multiplicative methods for
calculating things like the probability of rolling snake eyes, or tails coming up four times in a row when
flipping a coin would not longer work.

These sorts of events also hold an interesting relationship to conditional probability. If we once again ask
the question: "what is the probability of event A given that event B has occurred," but with the caveat that
both events are independent we arrive at a much different result. By combining equations 1 and 9 we get:

Pr(A|B) = P (A ∩B)
Pr(B) (10)

= Pr(A)Pr(B)
Pr(B) (11)

= Pr(A) (12)

This result is a second, conditional probability based definition of independence. It allows us to say that
two events are independent if and only if Pr(A|B) = Pr(A) and Pr(B|A) = Pr(B).

We can use this result to further prove that a collection of n events is independent if an only if the
equation below holds for any given pair of disjoint subsets:

Pr(Ai1 ∩ ... ∩Aik
|Aik+1 ∩ ... ∩Ain) = Pr(A1 ∩ ... ∩Ak) (13)

We can also rework equation 4 to define the conditional independence of a set given another event as:

Pr(Ai1 ∩ ... ∩Aik
|B) = Pr(Ai1 |B)Pr(Ai2 |Ai1 ∩B)...P r(Aik

|Ai1 ∩Ai2 ∩ ... ∩Aik−1 ∩B) (14)

= Pr(Ai1 |B)...P r(Aik
|B) (15)
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3 Wrapping Up

I’m going to end this document here for now. I might come back to it and add things sometime in the future,
but to be completely honest I doubt I will. I hope this short run down of conditional probability was helpful
to someone out there. Also, I wrote this as a first draft and I’m putting it out that way, so if anyone happens
to read through this and notice any errors please feel free to contact me via the email at the top of the
document.
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