
Optimization Under Uncertainty:
The Scenario Approach and Guaranteed Error Machines

Elliot Pickens
pickense@carleton.edu

June 27, 2020

Abstract

Navigating uncertainty is never easy, and when it rears its head optimization becomes a particularly
difficult task. Under such circumstances we cannot simply carry out an optimization regime directly.
Instead we must find a way to incorporate the uncertainty into the optimization process. One approach to
this problem is the "scenario approach." In this paper I will outline the basics of the "scenario approach"
and dive into a few basic applications. In particular, I will show the link between statistical learning and
the "scenario approach" through a treatment of guaranteed error machines. Following the introduction
to GEMs I present a few potential expansions of GEMs and investigate their efficacy on both real and
synthetic data.

1 Introduction

For centuries mathematicians, statisticians, and all persons interested in quantitative problem solving have
incorporated some form of optimization into their process. Since the 1900s significant work has been put
into formalizing such processes mathematically and searching for methods that apply modern developments
in mathematics and computing to optimization.[9] One methodology to arise from the past decade is the
"scenario approach." The scenario approach attempts to answer the question of how can we find an optimal
value or set of values when outcomes are not guaranteed to stay the same.

Settings where the outcome is not known to be consistent may seem rare, but they pop up in a number
of areas. Robotics and control systems are one area where consistent outcomes cannot be depended upon
given the potential for disturbances and incomplete knowledge of system dynamics. Finance is another area
that is likewise plagued by uncertainty due to rapidly evolving and reactionary market dynamics.[3] The list
of examples is boundless and as a result a great deal of effort has been put into figuring out how we can
effectively apply an optimization program when uncertainty emerges. This paper centered on one solution to
the problem: the scenario approach.

In the following sections I first introduce a several approaches to optimization under uncertainty, before
moving onto the specifics of the scenario approach and outlining the theory behind it. In subsequent sections
I investigate how the scenario approach can be used in data centric environments and its possible applications
within the space. In particular, I hope to show how the lessons learned from the inherently uncertain situations
considered by the scenario approach transfer to the world of big data where uncertainty is frequently overlooked.

1

2 Optimization Under Certainty

The goal of optimization is to the find the best possible solution in a broad solution space. In traditional
optimization problems this "best" solution is generally assumed to be unique and consistent. That is to say
that if an optimization program returns a set of parameters we assume that those parameters are and will
continue to be optimal.

3 Optimization Under Uncertainty

Under uncertainty, a set of uncertain elements denoted ∆ is introduced. In this context, each δ ∈ ∆ can be
interpreted as an uncertain outcome. Naturally, each of these elements will interact slightly differently with
each possible ν, where ν ∈ Rd−1 is a vector of parameters.[3]

These uncertain elements disallow us from simply solving for a true "best" set of parameters, because each
δ has a potentially unique "best" ν. In lieu of a true "best" set of parameters, under uncertainty we introduce
a loss function `(ν, δ) that we will optimize by finding the ν that best minimizes (or inversely maximizes) its
output.[3]

3.1 The Worst-Case Approach

When handling uncertainty the worst-case approach is possibly the most intuitive. Given that we have to
handle some degree of uncertainty, it is natural to consider the effect such unpredictability can have on the
set of possible outcomes.

In the worst-case approach we take advantage of our knowledge of ∆ in order to mitigate the result of the
most destructive uncertain element δ. This approach is naturally fairly conservative in nature, but when
stability is required it is not uncommon to adopt such a method.[3]

minν∈Rd−1 [maxδ∈∆`(ν, δ)] (1)

The general form of the worst-case approach is presented above in equation 1. It is important to note
going forward that while we will seek a number of different approaches to optimization under the shadow of
∆, the standard form of the combining minimization and maximization functions will continue to show up as
the key component of many approaches.

3.2 The Average Approach

The average approach brings a much more probabilistic perspective to the problem. Within the framework
of this view, we take ∆ to be a random variable supplied with a probability distribution P. Depending on
the setup of the optimization being carried out, P can be setup in a number of different ways. P can, for
example, be used to weight the importance of each uncertain element δ or represent the rate at which they
occur. Regardless of setup, the importance of P for the purposes of the average approach is that it can be
used to assign a weight value to each δ and carry out an expectation operation over ∆.[3]

2

minν∈Rd−1E∆[`(ν, δ)] = minν∈Rd−1

∫
∆
`(ν, δ)dP (2)

This approach is frequently applied to noisy systems where each burst of noise (δ) can be understood to
have been a draw from some sort of distribution (commonly a Gaussian). It should also be noted that while I
will not investigate any other optimization methods that make explicit assumptions about the nature of ∆,
the scenario approach itself does hold a philosophical connection to the average approach via its probabilistic
formulation of the problem.

3.3 The Chance-Constrained Approach

The chance constrained approach is yet another probabilistic path towards optimization. Rather than simply
taking an average view of ∆, the chance constrained approach looks to achieve a given level of success with a
preset probability.

Like the worst case approach, the chance constrained approach also seeks to minimize a worst case scenario.
In fact, the chance constrained approach is effectively a special case of the worst case approach that operates
over only a specific portion of ∆.[3]

minν∈Rd−1,∆ε
[maxδ∈∆ε

`(ν, δ)] (3)

This approach allows us to find the minimum loss value that is directly associated with the risk level we
are willing to accept. Tuning ε will therefore adjust both the risk level and the parameters of our function.

Compared to the previous two methods mentioned, the chance constrained approach is unique in that it
allows the user to input their personal risk tolerance into the optimization program. Although allowing the
user to make decisions about the uncertainty of an environment is not always beneficial, it can be incredibly
helpful when expert knowledge is available. In finance, for example, each investor has a set of requirements
they must meet in order to stay solvent and turn a profit. The chance-constrained approach allows for such
requirements to be take into account in a way neither the worst-case or average approach do.

Considering the usefulness of a tune-able risk parameter it is natural to wonder whether this approach
has seen widespread adoption. At the moment it has not seen much use (in spite of significant theoretical
work) due in large part to the complexity of actually solving chance constrained optimization. This difficulty
(and the general question of how we can tune our risk level) is something to keep in mind as we move into
the discussion of the scenario approach.

4 The Scenario Approach

Similar the other methods previously mentioned, the scenario approach uses a probabilistic angle of attack.
Unlike the average and chance constrained approaches, however, the scenario approach does not require com-
plete knowledge of the distribution P associated with ∆. Instead, the scenario approach seeks to approximate
∆ by independently sampling N scenarios δ1, δ2, ..., δN from P. Approximating P with N scenarios may seem

3

somewhat difficult, but we will see that it is possible to develop a very precise definition of our approximation.
The use of sampling also has the added benefit of increasing the computational tractability of algorithms
built onto of the set used to approximate ∆.[3]

Once a sample set of scenarios δ1, δ2, ..., δN has been collected, we can consider the simplest possible
scenario program.[3]

minν∈Rd−1 [maxi=1,...,N`(ν, δi)] (4)

This program, which is referred to as SPN (a scenario program with N scenarios) is at its core an
application of the worst-case approach to our sample of ∆. Solving this program will return an optimal set of
parameters ν∗ with an associated loss value `∗.[3]

Key Assumption: Convexity

The scenario approach works under the assumption that the loss function `(ν, δ) is convex in ν.
Convexity in ν inherently sets a limit on the application of the scenario approach, but given that
many problems are convex (or can be restructured to be convex) this limitation is by no means a
heavy cap on the scenario approach.a

Convexity of a function can be formalized to state that a function f(ν) is convex if ∀ v′, v′′ and
α ∈ [0, 1]:[3]

f(αν′ + (1− α)ν′′) ≤ f(ν′) + (1− α)f(ν′′) (5)

This definition of convexity plainly states that if a line is drawn between any two points ν1, ν2 on the
graph of f(ν) it will sit above f(ν3) ∀ ν1 < ν3 < ν2.[3]

aSome work has been done to push the scenario approach past the limitation of convexity, but it is still an open area
of research.[3]

4.1 Example: Polynomial Fitting

Imagine we are in possession of some data set that contains a series of points (xi, yi) ∈ R2. How could we use
the scenario approach along with such a data set to fit a polynomial to our data?

In this example we have N independently sampled data points that we can treat as scenarios. Thus,
assuming we believe the polynomial that best suits our data is quadratic we can setup a simple implementation
of the scenario approach.

minν1,ν2,ν3 =
[
maxi=1,...,N |yi − [ν1 + ν2xi + ν3x

2
i]|
]

(6)

Equation (6) follows the standard setup of the scenario approach shown in equation (4) to select the set
of parameters ν = {ν1, ν2, ν3} that best fit the data. In this particular example, this process is akin to finding

4

Figure 1: Example data against the line we are trying to fit1
1 Graphic based on an example presented in [3]

the center of the band, which best encapsulates all of our data.1[3]

4.2 How Good is the Scenario Approach?

As previously mentioned, the scenario approach uses an approximation of ∆ to solve for our set of solution
parameters ν∗. Computationally a sample based approximation of ∆ is incredibly useful, but if we cannot
determine the accuracy of our approximation its unclear whether or not it is possible for a scenario program
to return a valid result. To do this we need to consider the worst case loss `∗ that can result from a given
scenario program. `∗ is the upper bound given by applying a worst-case optimization to a set of scenarios
δ1, δ2, ..., δN via SPN , but it is by no means an upper bound for all of ∆. This discrepancy brings about the
question of just how large the difference between `∗ and `worst−case is.[3]

Theorem 4.1. For any ε ∈ (0, 1) (violation parameter) and β ∈ (0, 1) (confidence parameter), if the number of
scenarios N satisfies N ≥ 2

ε (ln 1
β+d−1), then with probability ≥ 1−β, it holds that P{δ ∈ ∆ : `(ν∗, δ) > `∗} ≤ ε

The theorem above points to a couple of key results. Theorem 4.1 states that the probability that some
new (and unseen δ) results in a loss value `(ν∗, δ) that is greater than `∗ can be held to a given value of ε.
Conversely, a given ε value may or may not be satisfied depending on the set of scenarios at hand. Each sample
of ∆ is different and each resulting ν∗ and `∗ are unique. Since ν∗ and `∗ inform P{δ ∈ ∆ : `(ν∗, δ) > `∗} ≤ ε
depends on the sample. The theorem accounts for this by including a second level of probability β as a way
of reflecting the rate at which different samples occur. When put together, the ε bound is said of hold true
with probability 1− β.[3]

The pairing of ε and β does not benefit the readability of theorem 4.1, but it does allow for a number of
straight forward computations. With this theorem we can quickly solve for N, ε, and β assuming we either
know or can assume something about the other two values.2 Such calculations are particularly useful during

1We can formalize the process of fitting a "band" around our data through the use of a Chebyshev layer[6]
2I do not mention d alongside the other parameters in this case because I assume the number of optimization variables can

easily be calculated

5

the early stages of solving a scenario program. In particular, we can select a pair of ε and β values that we
are willing to accept and use them to inform our sampling process.[3]

It is also interesting to note that knowledge of P is not required when using theorem 4.1. We are solely
dependent on our sample and the scenarios within it. This is a slightly odd, but powerful result given that
it implies a forceful level of universality to the scenario approach. That being said, knowledge of P is not
worthless. When setting up a scenario program we can find a better version of ν by using our prior knowledge
to restrict its domain. This could take the form of zeroing out a number of parameters, bounding their range,
or otherwise altering the space they take on.[3]

4.3 The Risk Return Trade-off

In the previous sections we have seen how the scenario approach can identify a set of parameters that
limit the chance of throwing back a loss value worse than the worst case seen in the scenario sample. It is,
however, possible that the solution to the scenario program does not provide an acceptable return (success
rate/performance level). In such cases its reasonable to consider the how we might be able to tune our risk
level in order to settle on a new ν∗, which meets out performance requirements.

Conveniently, the scenario approach is perfectly suited for such a posteriori tweaks. Considering the set
of scenarios δ1, δ2, ..., δN are already in hand there are a few simple operations we can carryout during the
improvement process. The foremost being a straightforward search. Using our ν∗ we can find all scenarios
that result in the worst case loss `∗ by plainly plugging them into `. A plug in and test everything method is
easily accomplished via `(ν∗, δi) = `∗ for all i ≤ N, i ∈ Z.[3] Once all such scenarios have been found we can
discard them, leaving us with a reduced sample. With the remaining scenarios in the sample we can then
rerun the scenario program to get a new ν∗ and `∗. If the new values still fail to meet the user requirements
the process outlined above can be repeated until such a level is achieved.[3]

At first glance such a tuning algorithm may seem like a violation of previously stated theorems, and
perhaps an infringement on the heavily sample dependent scenario approach as a whole. Fortunately, the
worries mentioned above are only partly true, and with a few alterations to the previous theorems we can
snugly fit our tuning algorithm within the theoretical underpinning of the scenario approach.

The following two theorems are versions of theorem 4.1 that have been adapted to account for k discarded
scenarios. These theorems both use with ν∗k and `∗k to represent the set of parameters and performance level
that arise from the scenario program after k scenarios have been discarded.[3]

Theorem 4.2. `∗k is εk-risk guaranteed with probability ≥ 1− β, where

εk = k

N
+
[√

k

N
+
√
k + 1
N

(
(d− 1)ln(K + d− 1) + d− 1√

k
+ ln

1
β

)]
(7)

Theorem 4.3. `∗k is approximately εk-risk guaranteed with probability ≥ 1− β, where

εk = k

N
+O(N√

N
) (8)

6

The two theorems above can each be divided into two terms: a k
N term and as theorem 4.2 makes clear a

slightly more complicated one. In theorem 4.2 that second term looks quite daunting, but with a little bit of
simplification we can arrive at the much more readable theorem 4.3. We reach theorem 4.3 by recognizing
that the bracketed term in theorem 4.2 approaches zero as O(lnN/

√
N), which is only slightly slower than

O(1/
√
N).

The beauty of theorem 4.3 and O(1/
√
N) convergence is that if we hold the ratio k

N constant then the
second term in theorem 4.3 will go to zero as O(1/

√
N) meaning that will a large number of scenarios tuning

risk by discarding scenarios will only slightly alter our overall confidence.[3]

It also happens to be true that theorem 4.2 holds true regardless of the way in which the scenarios
are discarded. Whether we discard scenarios based on the degree to which they improve performance or
at random the result is the same. The lack of direct connection to the specific scenarios being discarded
allows for a significant degree of flexibility in applying theorem 4.2. We can even use it to create a scree
like risk-performance plot to inform us roughly how many scenarios we can throw away without taking on
unnecessary risk.[3]

4.4 General Form of the Scenario Approach

Throughout the previous sections the scenario approach was a stated as a program that focused on the
minimization of a loss function `. A formulation of the scenario approach centered on ` is effective, but
not necessarily the most efficient statement of the optimization program. In this section we will cover a
reformulation of the problem couched in the language of linear programming.

To begin we will restate `(ν, δ) as a linear cost function cT θ where θ ∈ Θ ∈ Rd. When expressed as a
linear cost function we can easily rewrite the scenario program as:

SPn : minθ∈Θc
T θ s.t. θ ∈ ∩i=1,...,NΘδi (9)

When converted to a linear cost function it is not initially clear how each scenario δ plays a role in the
optimization. Within linear programming δ shifts to merge into Θ. θ is used to represent (ν, `) and each
constraint Θδ becomes indexed by some δ. Here we can see that both ` and δ have camouflaged themselves,
but not truly disappeared. In fact, we are still minimizing ` where ` ≥ `(ν, δ) through θ. Both variables also
continue to exist in each Θδ which is defined as the set where ` ≥ `(ν, δ).[3]

It is also important to note that stating the scenario program as a linear program will not harm the
assumption of convexity, although some convex functions may need to be rewritten to fit within equation (9).[3]

Since this more general form of the scenario approach does not change any of the assumption previously
present in theorem 4.1 we can amend it to the more general setting with a few basic substitutions as:

Theorem 4.4. ∀ ε ∈ (0, 1) and β ∈ (0, 1) , if N satisfies N ≥ 2
ε (ln 1

β + d− 1), then with probability ≥ 1− β,
it holds that P{δ ∈ ∆ : θ∗ /∈ Θδ} ≤ ε

7

The theorem above is nearly identical to theorem 4.1 with the sole exception being the way in which we
define a violation of the ε bound. In this version, we use the constraint θ ∈ Θ in place of the old ` based
constraint.[3]

4.5 A Deeper Look: Additional Theoretical Results

Following the generalization in the previous section in this section we will cover a few expansions of the
theorems we have encountered with a greater degree of detail. In particular, we will cover theorems 4.1 and
4.4 in greater detail.

Definition: Violation Probability

Violation probability is defined as the probability a of the violation set θ occurs, where the violation
of θ ∈ Θ is defined as {δ ∈ ∆ : θ /∈ Θδ}. Using the definition of the violation set, we can write the
probability of its occurrence as V (θ) := P{δ ∈ ∆ : θ /∈ Θδ}.[4]

Note: {δ ∈ ∆ : θ /∈ Θδ} ⊂ ∆ while the violation is a probabilistic measure over another distri-
bution P{δ ∈ ∆ : θ /∈ Θδ}. It should also be mentioned that these concepts exist independent of
optimization.[4]

With the definition of violation probability in hand we will introduce a few important assumptions.

Assumption 1. Convexity: Θ and Θδ, δ ∈ ∆, are convex and closed sets[4]

Assumption 2. Existence and Uniqueness: ∀m and ∀ samples (δ1, δ2, ..., δm), the solution to the scenario
program defined in equation (9) exists and is unique[4]

Using assumptions 1 and 2 we can now introduce the generalized theorem of the scenario approach.

Theorem 4.5. Let N ≥ d. Then assumptions 1 and 2 imply that [4]

PN{V (θ∗) > ε} ≤
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (10)

An interesting side effect of theorem 4.5 is that it allows us to bound the violation probability V (θ∗) with
a flip of the inequalities in equation (11) using:[4]

FV (ε) := PN{V (θ∗) ≤ ε} ≥ 1−
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (11)

Which can be further refined by noticing that the sum present in equations (10) and (11) is equivalent to
the cumulative distribution function of a beta distribution. Thus, we restate it as a beta distribution with
shape parameters d and N − d+ 1 as follows: [4][1]

fB(ε) = d

(
N

d

)
εd−1(1− ε)N−d (12)

The form of this beta distribution tied to equation (12) has a compelling impact on the on probability
that violation probability exceeds the ε bound present in both equations (10) and (11). Beta distributions

8

embody the property that the bulk of their density can be shifted significantly by altering their parameters.
[1] Since equation (12) operates over ε, the entire distribution exists over [0, 1]. Thus, by invoking the nature
of the beta distribution we can push the majority of the distributions density closer to either 0 or 1 by
changing the shape parameters through N and d.

Shifting the density of the beta distribution is effectively equivalent to shifting the ε bound where a move
towards 1 raises the violation probability and a move to 0 does the opposite. Key to these shifts is the
relationship between N and d. Increasing N will push the distribution closer to 0, while upping d results in
an inverse movement.[4] Such a result is not unexpected given what we already know from theorem 4.1. At
their core the paring of theorem 4.5 with equation (12) act together to state that a larger sample is a better
approximation of ∆ than a small one, and that as the number of parameters present in an optimization
increases so does the number of scenarios required.[4]

4.5.1 A Quick Derivation

Having spent the time to describe the generalized theorem of the scenario approach we can show the derivation
of theorem 4.3 using just algebraic manipulation.

The process of taking theorem 4.5 to 4.3 can be done in three steps. First we will find a bound for
equation (10). Second will we rearrange the bound found in the first step to approach the form of theorem
4.3. Third we will introduce a bound for the form found during the second step.[4]

To begin the first step we note that the basic form of equation (11) is quite similar to theorem 4.3. Given
the resemblances we can show theorem 4.1 by bounding the right hand side of equation (11) below with
the confidence parameter β. Thus, we want to show 1−

∑d−1
i=0

(
N
i

)
εi(1− ε)N−i ≥ 1− β. Alternatively, by

canceling the ones and swapping the inequality we can show
∑d−1
i=0

(
N
i

)
εi(1− ε)N−i ≤ β. With that goal in

mind we can begin expanding
∑d−1
i=0

(
N
i

)
εi(1− ε)N−i using the following sequence3:[4]

d−1∑
i=0

(
N

i

)
εi(1− ε)N−i = 2d−1

d−1∑
i=0

(
N

i

)
εi

2d−1 (1− ε)N−i (13)

≤ 2d−1
d−1∑
i=0

(
N

i

)
(ε2)i(1− ε)N−i (14)

≤ 2d−1
N∑
i=0

(
N

i

)
(ε2)i(1− ε)N−i (15)

= 2d−1(ε2 + (1− ε))N (16)

= 2d−1(1− ε

2)N (17)

≤ 2d−1e−
ε
2N (18)

For the second step, we will plug in our β bound and then apply the natural logarithm to the inequality
to obtain:[4]

3The final inequality in the sequence holds because e−x lies above 1 − x[4]

9

2d−1e−
ε
2N ≤ β (19)

(d− 1)ln2− ε

2N ≤ ln(β) (20)

In the third and final step, we rearrange the previous equation to place N on the left side and introduce a
final bound which happens to be our desired result4.[4]

N ≥ 2
ε

(ln 1
β

+ ln2(d− 1)) (21)

N ≥ 2
ε

(ln 1
β

+ d− 1) (22)

The algebra present in this transformation may not be of particular importance, but it does help to
elucidate the connection between the more formal definitions used in section 3.5 and the more intuitive
theorems given earlier on.

5 Connection to Statistical Learning

Previously we glanced at a data driven application of the scenario approach, where we used it to fit a
polynomial to a data set. In this section we will expand upon the use of the scenario approach within a data
centric environment. More specifically we will show how the scenario approach can be leveraged for statistical
learning applications.

5.1 A Brief Introduction to Statistical Learning and Classification

Statistical learning is a broad and very active area of study with a number of different sub-fields, so for
the purposes of this paper we will focus on one specific topic: classification. In particular, we will focus on
supervised classification.

When studying classification we are presented with the problem of how we can assign a label y to an object
x. Each label y is discrete quantity and each object x ∈ Rp is a vector of attributes (or features) that will be
used to estimate y. Although the label y can take on many different values in the general classification setting,
in the following sections we will assume that we are dealing with binary classification where y ∈ {0, 1}.[7]

For the purposes of classification we assume that y is determined by x, but we have no way of knowing the
map y = y(x). Therefore, we have to find a way of estimating it via some other function. Such an estimation
function is known as a classifier and denoted ŷ = ŷ(x). When creating a classifier our goal is to minimize the
number of instances where y(x) 6= ŷ(x) in order to construct a classifier with the lowest possible error rate.[7]

4We are able to drop the ln2 term because ln2 < 1[4]

10

Definition: Probability of Error

Within the statistical learning framework we assume that x occurs according to some probability
denoted µ. The degree to which a classifier approximates y(x) is then calculated by checking the
probability of x where the classifier is incorrect, or µ{x : y(x) 6= ŷ(x)}. This probability is known as
the probability of error and commonly denoted PE(ŷ).[7]

Note: we cannot calculate PE(ŷ) without knowledge of µ and y(x).[7]

Considering our goal when building a classifier is to minimize our error rate when assigning labels it is
tempting to attempt to minimize PE(ŷ) directly. Sadly, such an approach is impossible due to our lack
of knowledge about the underlying data generation process. That being said, it is possible to alter our
conception of PE(ŷ).[7]

One way to adjust PE(ŷ) is to use a ternary-valued classifier. Ternary-valued classifiers can return a
value of "unknown" in addition to the standard {0, 1}. Allowing a label of "unknown" effectively allows the
classifier to abstain from making a decision about a data point. A side effect of an occasional refusal to
classify is that we can redefine PE(ŷ) as PE(ŷN) = µ{x : ŷN (x) = 0 or 1, and y(x) 6= ŷ(x)}.[7]

5.2 Guaranteed Error Machines

Guaranteed error machines or GEMs are ternary-valued classifiers that employ the scenario approach to
achieve clearly bounded error rates.[2] The complete version of the GEM algorithm can be found Campi’s origi-
nal paper of on the subject, but during the following sections I will present a simplified version of the algorithm.

(a) Example data set where the two regions can be
divided by y = 1/2 − x

(b) First step of the GEM algorithm

Figure 2

Suppose we are given the data set shown in figure 2.a. We want to build a classifier that correctly divides
the two regions by labeling points above the line y = 1

2 − x as blue and those below the line as red. To
construct such a classifier we are going to repeatedly fit a series of disks to the data.5 Combined, these disks

5The full GEM algorithm allows for us to use more than just disks[2]

11

will define the ternary-valued GEM classifier.

To begin building a GEM classifier we must first select a value d which will define the frequency with
which we return the label "unknown."[2][7] In the context of the disk (or in higher dimensions, hyper-sphere)
based version of the GEM algorithm, d will define the maximum number of disks that can be fit to the
data.[7] Once this cap has been set we can begin our application of the GEM algorithm.

As is illustrated in figure 2.b, the initial disk is fit by choosing a center point and then finding the nearest
point of the opposite label. This opposite label point is know as the support point and will be used to define
the limit of the disk emanating from a given center. Once the support point has been found and the disk has
been fit, all points within the disk are discarded from the data set and the current support point is taken to
be the new center point. The process of is then repeated for the new center in order to create another disk
(with the opposite label). This alternating sequence continues until we have fit d disks, at which point any
areas within the region that are left uncovered will return an "unknown" label.[2][7]

(a) Disks fit by the GEM algorithm (b) Label regions defined by the GEM algorithm

Figure 3

Once all disks have been fit we can combine them to divide up the region among our three labels. In
figure 3.b we can see that the disks ultimately create a region that while imperfect does succeed in roughly
representing the divide between the two labels. It should also be mentioned that the GEM classifier used to
fit the regions shown in figure 3.b was not given a high tolerance for "unknown" labels, and as a result only
returns "unknown" for a small region in the lower left hand corner.

Although it may not be initially obvious, the fitting of each individual disk is a scenario procedure. Thus,
the GEM algorithm can be restated as a sequence of optimizations that each seek to maximize the number of
points correctly classified before hitting an incorrect classification. As a byproduct of our ability to state the
GEM algorithm through the lens of the scenario approach we can apply theorem 4.5 to produce the following
theorem:[7][5]

Theorem 5.1. For a given probability µ with density, the probability distribution of the probability of error

12

PE(ŷN) of the GEM algorithm has the relation:

FPE(ε) := µN{PE(ŷN) ≤ ε} ≥ 1−
d−1∑
i=0

(
N

i

)
εi(1− ε)N−i (23)

Theorem 5.1 shows that the GEM algorithm has an error bound that is identical to the bound shown in
theorem 4.5. This result is striking because just as we saw in the previous sections, the bound is not tied to
any distribution and in this case holds true regardless of y(x) and µ.[7]

5.3 Extending the GEM Algorithm

After spending some time working with my implementation of the GEM algorithm I began to wonder how it
could possibly be extended. Like all classifiers, the GEM algorithm is not perfect, but I wondered whether
it would be possible to increase effectiveness of the algorithm by incorporating ideas found elsewhere in
statistical learning.

5.3.1 Ensembles

The first extension of the GEM algorithm I implemented was an ensemble version that allowed an arbitrary
number of GEM classifiers to be fit to data set. The choice to begin with an ensemble was driven by a
curiosity as to whether it is possible to reduce the rate at which "unknown" labels are returned without over
fitting to the training data.

Classifier ensembles can be created in a number of different ways, but regardless of architecture all
ensembles look to improve performance by combining the strengths of a number of models in order to create
a single more powerful model.[10] The ensemble implementation I employ is a random forest type committee.
Committee style ensembles allow each classifier to vote on the predicted label. The votes are then tallied and
the label with the most votes is returned. [10]

5.3.2 Bagging

With the baseline ensemble setup in place we can begin to add a few complications to the creation of the
ensemble with the hope of raise the overall performance level. The first augmentation I considered was bagging.

The goal of bagging is to improve predictive accuracy by reducing the variance of a classifier. We can
achieve this aim by averaging our set of observations. This can be done by using a number of different
training sets to build separate classifiers whose predictions can be averaged. Under perfect circumstances we
could obtain our classifiers by using a multitude of training sets, but considering it is unlikely that we will be
in possession of an abundance of training data we can instead turn to the bootstrap.[11] By bootstrapping we
can expand a single training set into many by sampling from it. The bootstrapped training sets can then
used to fit classifier that can be averaged. We can formalize this process as:[11]

f̂bag(x) = 1
B

B∑
b=1

f̂ b(x) (24)

13

5.3.3 Random Forests

The next adaption I chose to add was ability to create a random forest composed of GEM classifiers. The
goal of using a random forest in place of a bagging is to hopefully "decorrelate" the classifiers being added to
the ensemble.[11]

Much like bagging, random forests are centered around the use of the bootstrap. Just as was the case
during the creation of the bagged ensemble, the first step in creating a random forest classifier is the creation
of a large number of bootstrapped training sets. We then fit individual classifiers to each of the training sets
just as we did when bagging, with one important caveat. When fitting the classifiers we limit the maximum
predictors any given classifier can take into account, such that no single classifier is able to use the full set
of predictors when being fit. This restriction is put in place to diversify the classifiers being placed in the
ensemble.[11]

When applied to decision trees, random forests ensure that not every tree placed in the ensemble is
utilizing the same splits. When applied to the GEM algorithm, random forests instead alter the way in which
the distance between the center and nearest support point is calculated.

5.4 Methodology

After implementing both bagging and random forest adaptations of the GEM algorithm I tested both methods
in addition to the standard form of the GEM algorithm on both synthetically generated data and real world
data set.

The synthetic data set was created by generating five features independently of one another by taking
random draws on the interval [−0.5, 0.5]. A label is then assigned to each data point based on whether or
not the sum of the five features was greater than zero. This data generation process was chosen as a base-
line to represent an unambiguous classification problem where the two classes are separable using a hyperplane.

Each method was tested on the synthetic data by fitting 100 copies of each classifier to 100 different
randomly generated data sets. True positive, true negative, false positive, and false negative numbers were
then calculated for each classifier by testing their predictions on a unique test sets.

To test the methods on a less clear cut "real world" data set I selected the famous Wisconsin breast
cancer detection data set. The Wisconsin breast cancer data set is well known within the machine learning
community and is commonly used for both teaching and method evaluation. The data set is comprised of
an sample code (ID), nine numeric features, and a binary class value (representing benign and malignant
cancers).[8] Before use the ID number was dropped and the data was scaled to prevent distance calculations
being skewed or distorted, but the data was otherwise left in its original form. A single observation (out of
700) was also dropped due to the presence of an NA value in "Bare Nuclei" feature.

Each method was then tested on the cancer data by running 250 simulations for each method, where a
portion of the data set was randomly drawn and used as the training set and the remaining portion was used
for testing. True positive, true negative, false positive, and false negative numbers were calculated for each

14

pairing of classifier to random data set, as was the case with the synthetic data.

5.5 Results

Figure 4: Distribution of accuracy scores for each method using synthetic data

Looking at the results from the tests carried out on synthetic data we can clearly see that the two ensemble
methods out performance the standard GEM algorithm by a wide margin. It is, however, intriguing to note
that in this case the bagged ensemble just slightly exceeds the random forest ensemble in terms of accuracy.
Initially this appears to be an unexpected result, but recall that the label of each data point equally weighs
all five features. Since each feature is of equal importance, restricting the set of features that can be used
when fitting the classifiers is not only unhelpful, but outright harmful.

Figure 5: Distribution of accuracy scores for each method using cancer data

Across the simulations carried out on the cancer data set, we can see a more expected pattern occur as

15

the random forest beats out the bagged ensemble in each metric shown. This is likely caused by interactions
between features that are causing unhelpful correlations between classifiers. In this case the random forest is
able to avoid the pitfall of such interactions slightly better than the bagged approach and post higher (and
more concentrated) scores as a result.

(a) FNR by method on cancer data (b) FPR by method on cancer data

Figure 6

Perhaps the most intriguing results are those shown in the error plots in figure 6. Both ensemble
methods dramatically outshine the standard GEM algorithm. Although, no research has truly explored
this phenomenon, theorem 5.1 appears to provide at least some insight into the matter. With theorem
5.1 we can place error bounds on each of the classifiers within our ensembles, where N remains constant
across all involved classifiers and d is same in the bagged and standard cases, while being reduced in the
random forest version. Thus, theorem 5.1 would seem to imply the possibility of the random forest having a
lower error rate (assuming that it is possible to treat an ensemble of scenario programs as a single grand
program - a result not yet proven). The empirical results of these simulations appear to show this may be
the case (especially given the striking resemblance the distributions shown in figure 6.a have to the Beta
distribution described in theorem 5.1), but further research is needed to reach a strong conclusion on the matter.

Aside from the connection between the empirical results and theory outlined in previous sections it is
exciting to see that the results indicate the potential efficacy of the scenario approach in the domain of
statistical learning. While this section is focused on GEMs it can also be seen as a proof of concept for the
application of the scenario approach to statistical methods. From a production standpoint it is also crucial to
highlight that even when using the ensembled versions of the GEM algorithm the results shown in figure 6
imply a clear connect to the theoretical bounds allowing for readily explainable worse case performance levels.
Such lower bounds could be invaluable when presenting a predictable model.

5.6 Future Improvements

The promise shown by the bagged and random forest versions of the GEM algorithm begs the question of
how other statistical learning techniques could impact the power of the GEM algorithm. In particular, I
think boosting could further improve upon the ensembles I investigated by more intelligently weighting the
individual classifiers within the ensemble by building upon one another to better classify difficult examples
using the following equation:[10]

16

f̂(x) =
B∑
b=1

λf̂ b(x) (25)

To find such λ weights we need to in case our classifiers within an algorithmic shell. In the context of
GEMs we can imagine adapting the well know "AdaBoost" algorithm to work with GEMs. We could do this
by using the algorithm outlined below.6[10]

AdaBoost for GEMs

1. Initialize a set of equal weights wi = 1/N such that each of the N observations has an initially
equivalent weight

2. Then for each of the M classifiers to be included in the ensemble:

(a) Fit a weak GEM classifier to the weighted training set

(b) Compute the error of the classifier where errm =
∑N

i=1
wiI(yi 6=Gm(xi))∑N

i=1
wi

(c) Use the error value to compute αm = log((1− errm)/errm)

(d) Update the weights using the alpha value as wi ← wi ∗ exp(αm ∗ I(yi 6= Gm(xi))) ∀ wi

3. Return the sign of the sum
∑M
m=1 αmGm(x) or 0 if the sum is 0

The reasoning behind the adaptation of AdaBoost for use with GEM algorithms stems from the success
that AdaBoost has shown when used with tree based classifiers. Given the process of fitting a GEM is not
too dissimilar to that of fitting a decision tree it seems reasonable to believe AdaBoost is prime candidate
for boosting GEMs.7 In order to meld the two methods we do, however, need to include one significant
alternation to each of GEM classifiers in the ensemble: make them weak. A weak classifier is simply a
classifier that is not very good and is likely only slightly better than randomly guessing.[10] For the tree
based version of AdaBoost we create weak tree classifiers by heavily pruning them and reducing them to
"stubs" that include just a single split. For GEMs we can achieve an analogous result by fitting just two
regions and allowing the remaining space to be considered uncertain. The figures below show the results of
an example weak GEM classifier on a basic synthetic data set.

Initial prototypes of the AdaBoost adaptation have shown signs of similar levels of improvement as the
bagged and random forest ensembles of GEMs, but further testing before we can say with confidence that
this form of boosting fits well with GEMs.8

6The algorithm below is equivalent to the AdaBoost.M1 algorithm presented in ESL aside from two notable differences: this
algorithm is allowed to return 0 in rare cases and the classifiers that build the ensemble must be derivative forms of GEMs[10]

7The similarity in the fitting mostly refers to the way in which the two methods attempt to first find the most impactful split
or region before subsequently moving on to smaller and more difficult to classify regions

8My personal implementation of the algorithm appears to have a few bugs. Do to such problems I have not included the
results of GEM boosting in this paper. With luck I will release those results sometime in the future

17

(a) Data generated using the same process as figure 2 (b) Resulting weak GEM classifier

Figure 7

6 Conclusion

All things considered the scenario approach is strong tool with a wide variety of applications. From portfolio
optimization to statistical learning the scenario approach is capable of it all. In fact, the approach is more
than capable in a number of settings where it may even out perform existing methods due to its computational
advantages and easily determinable bounds. Given the upside of these benefits, with further research and
streamlining the scenario approach shows the potential to shine in a number of areas.

That being said, the scenario approach is by no means a universal multi-tool with the ability to solve
all problems. The necessary setup of a sampling method and reliance on the assumption of convexity are
limitations that must be considered when deciding to use the scenario approach.

These limitations should not, however, deter those hoping to use the scenario approach in their work.
When scenarios can be created with relative ease (as is the case with GEMs) the approach is both efficient
and flexible, while still being imbued with the added benefit that strength of the optimization is guaran-
teed. It should also be noted that when interpretability is desired the scenario approach may prove useful.9

When used in combination with non "black box" methods the scenario approach may be strikingly interpretable.

Future work investigation how to best use the scenario approach for parameter selection is needed to
flush out the application of the scenario approach to existing statistical methodologies like the the statistical
learning methods used for classification and predictive modeling. With such advancements the approach
could be more easily applied to problems like that shown in 4.1 without the used of methods like GEMs that
are built with the scenario approach based optimization in mind.

7 Acknowledgments

I would like to thank all those who have supported me throughout the comps process. From family to friends
and of course professors you all played an integral part in my completion of this project.

9Recent studies of interpretability within machine learning have shown that interpretable methods are not necessarily less
effective than more complex "black boxes"[12]

18

I would also like to give special thanks to the authors of Introduction to the Scenario Approach for both
putting out a great deal of well written work on the topic, and providing a some guidance into my own
investigation of the GEM algorithm.

19

References

[1] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

[2] Marco C. Campi. Classification with guaranteed probability of error. 2010.

[3] “Chapter 1: Introduction: Uncertainty in optimization and the scenario approach.” In: Introduction to
the Scenario Approach, pp. 1–20. doi: 10.1137/1.9781611975444.ch1. eprint: https://epubs.siam.

org/doi/pdf/10.1137/1.9781611975444.ch1. url: https://epubs.siam.org/doi/abs/10.1137/

1.9781611975444.ch1.

[4] “Chapter 3: Theoretical results and their interpretation.” In: Introduction to the Scenario Approach,
pp. 33–48. doi: 10.1137/1.9781611975444.ch3. eprint: https://epubs.siam.org/doi/pdf/10.

1137/1.9781611975444.ch3. url: https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.

ch3.

[5] “Chapter 5: Proofs.” In: Introduction to the Scenario Approach, pp. 55–66. doi: 10.1137/1.9781611975444.

ch5. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch5. url: https:

//epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch5.

[6] “Chapter 6: Region estimation models.” In: Introduction to the Scenario Approach, pp. 67–78. doi:
10 . 1137 / 1 . 9781611975444 . ch6. eprint: https : / / epubs . siam . org / doi / pdf / 10 . 1137 / 1 .

9781611975444.ch6. url: https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch6.

[7] “Chapter 7: Application to statistical learning.” In: Introduction to the Scenario Approach, pp. 79–87.
doi: 10.1137/1.9781611975444.ch7. eprint: https://epubs.siam.org/doi/pdf/10.1137/1.

9781611975444.ch7. url: https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch7.

[8] Dheeru Dua and Casey Graff. UCI Machine Learning Repository. 2017. url: http://archive.ics.

uci.edu/ml.

[9] Laurent El Ghaoni. Convex Optimization Lecture Notes for EE 227BT Draft, Fall 2013. 2013. url:
https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227BT/LectureNotes_EE227BT.pdf.

[10] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data
mining, inference and prediction. 2nd ed. Springer, 2009. url: http://www-stat.stanford.edu/

~tibs/ElemStatLearn/.

[11] Gareth James et al. An Introduction to Statistical Learning: with Applications in R. Springer, 2013.
url: https://faculty.marshall.usc.edu/gareth-james/ISL/.

[12] Erico Tjoa and Cuntai Guan. “A Survey on Explainable Artificial Intelligence (XAI): Towards Medical
XAI.” In: CoRR abs/1907.07374 (2019). arXiv: 1907.07374. url: http://arxiv.org/abs/1907.07374.

20

https://doi.org/10.1137/1.9781611975444.ch1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch1
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch1
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch1
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch1
https://doi.org/10.1137/1.9781611975444.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch3
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch3
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch3
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch3
https://doi.org/10.1137/1.9781611975444.ch5
https://doi.org/10.1137/1.9781611975444.ch5
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch5
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch5
https://doi.org/10.1137/1.9781611975444.ch6
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch6
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch6
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch6
https://doi.org/10.1137/1.9781611975444.ch7
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch7
https://epubs.siam.org/doi/pdf/10.1137/1.9781611975444.ch7
https://epubs.siam.org/doi/abs/10.1137/1.9781611975444.ch7
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
https://people.eecs.berkeley.edu/~elghaoui/Teaching/EE227BT/LectureNotes_EE227BT.pdf
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
https://faculty.marshall.usc.edu/gareth-james/ISL/
http://arxiv.org/abs/1907.07374
http://arxiv.org/abs/1907.07374

	Introduction
	Optimization Under Certainty
	Optimization Under Uncertainty
	The Worst-Case Approach
	The Average Approach
	The Chance-Constrained Approach

	The Scenario Approach
	Example: Polynomial Fitting
	How Good is the Scenario Approach?
	The Risk Return Trade-off
	General Form of the Scenario Approach
	A Deeper Look: Additional Theoretical Results
	A Quick Derivation

	Connection to Statistical Learning
	A Brief Introduction to Statistical Learning and Classification
	Guaranteed Error Machines
	Extending the GEM Algorithm
	Ensembles
	Bagging
	Random Forests

	Methodology
	Results
	Future Improvements

	Conclusion
	Acknowledgments

