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Abstract
Frequentist statistical learning algorithms are currently the dominant form of "machine learning" used

today, but they are far from the only form of "machine learning" in use. Possibly the greatest competitor
to that class of algorithms lies in Bayesian statistical learning. Bayesian methods offer nearly all the
capabilities of their frequentist counterparts, while allowing for a greater degree of probabilistic reasoning.
In this paper I introduce the a few of the fundamental tools used in Bayesian statistical learning and
show how they relate to more commonly used Bayesian algorithms.

1 Overview
Key to all Bayesian methods are joint probability distributions. These joint distributions are used to
describe how sets of random variables interact with one another. Each random variable has an associated
probability distribution, so in the context of building a predictive model we can imagine each feature
being given a random variable.

Joint distributions have a habit of getting quite complicated, so probabilistic graphical models (PGMs)
are frequently used to describe the ways in which variables affect one another by graphically representing
a joint probability distribution. In addition to benefiting interpretability, PGMs open new opportunities
for computational efficiency by combining Graph theory with Probability theory. [1]

In this paper I focus on unravelling one sub-class of probabilistic graphical models: belief networks.
Belief networks are a type of directed graphical model (DGM) and are sometimes referred to as Bayes
Nets.

2 Bayes Rule
Before we can create Bayesian Networks we must first briefly discuss their namesake: Bayes Theorem.
With Bayes Theorem we can succinctly relate the conditional probability of two (or more) random
variables and find the probability of Y (which is yet to be observed) given some X (which can be loosely
considered to be some form of evidence). [3]

p(Y |X) = p(X|Y )p(Y )
p(X) (1)

It should also be noted that Bayes Theorem shares a direct relationship to marginal probability. The
p(X) in equation 1 can be re-written as a marginal probability that acts as a normalizing constant in
Bayes Theorem. [3]

p(X) =
∑

Y

p(X|Y )p(Y ) (2)

The standard form of Bayes Theorem can be seen in equation 1, but for many applications the p(X)
in the denominator is ignored to reduce the computation required to calculate posterior probabilities
leaving us with the proportional form: [5]

p(Y |X) ∝ p(X|Y )p(Y ) (3)
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3 Belief Networks
Belief networks or Bayesian Networks are DGMs used to represent the independence assumptions made
in the creation of a probability distribution. By illustrating the independence assumptions present in a
given distribution, Bayes nets can be easily (and are generally) used to show casual relationships between
random variables. [1]

Figure 1: PGM Approximating Bat’s Choice to Eat Ice Cream

For example, consider the network shown above. Imagine that on a given day we make an observation
as to whether or not my friend Bat ate ice cream. Every time we observe Bat we record whether or not
he ate some ice cream, but we also want to know why we observed what we did. One way to peak at
what might be causing our observation would be to create a simple PGM where Bat’s perceived hunger
level and the temperature outside both influence Bat’s decision. Using such a model we can then use
hunger and temperature observations to infer about what Bat’s choice will be.

More formally, we can define a belief network can be defined as a directed acrylic graph (DAG)
G = 〈V, E〉. Since this graph is representing a belief network, each vertex v ∈ V is a random variable Xv

and each edge e = (u, v) ∈ E is a dependency between two random variables Xu and Xv. This structure
leaves us with the somewhat odd looking probability distribution function: [1]

p(x1, ..., pV ) =
V∏

i=1

p(xi|pa(xi)) (4)

In equation 4, pa(xi) is used to represent the parents of xi, and each term p(xi|pa(xi)) is a conditional
probability table (or CPD)1. [1] [7] Equation 4 should also clarify why we require that all belief networks
are DAGs. Without the assumption that our network is a DAG (and assurance that there are no internal
cycles) we cannot calculate the joint distribution given by equation 4, because pa(xi) becomes meaningless.
Each CPD denotes the distribution of the random variable at some vertex Xv that has been conditioned
over the values of the random variables it is dependent upon in the graph: D(v) = {u|(u.v) ∈ E}. [1]

Going back to our example with Bat, we have a PGM representing the relationships between our
variables, but we lack the CPDs required to calculate probabilities. In tables 1, 2, and 3 I have laid out
a set of example CPDs for Bat’s behavior. In this case, I simply chose values I thought made sense (a
loosely-informed prior), but I cannot say with any certainly that these values are correct. Even with
expert knowledge it can be difficult to select valid values for CPDs, so it is common to learn them from
the data being worked with2.

Table 1: Temperature (Hot)
T F
0.7 0.3

Table 2: Hunger Level (Hungry)
T F
0.6 0.4

1In this paper I use the notation pa(xi), but the notations xpa(t) and pak are also common [3] [7] [6]
2That learning process is known as parameter learning and is covered in section 4
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Table 3: Ice Cream (Consumed)
Ice Cream

Hungry Hot T F
F F 0.2 0.8
F T 0.7 0.3
T F 0.7 0.3
T T 0.9 0.1

The above CPDs can be combined with the equations in section 1 to solve for unknown probability
values. For example, imagine we want to find the probability that it was hot outside on a day that Bat
chose to eat ice cream. We can solve for that value using Bayes Theorem and some simple marginalisation.
[5]

p(Hot = T |Consumed = T ) = p(Consumed = T |Hot = T )p(Hot = T )
p(Consumed = T )

= p(Consumed = T,Hot = T )
p(Consumed = T,Hot = T ) + p(Consumed = T,Hot = F )

(5)

Which when marginalised becomes:

p(Consumed = T,Hot = T ) =
∑

Hungry

Consumed = T,Hot = T,Hungry) (6)

p(Consumed = T,Hot = F ) =
∑

Hungry

Consumed = T,Hot = F,Hungry) (7)

Where:

p(Consumed,Hot,Hungry) = p(Consumed|Hot,Hungry)p(Hot)p(Hungry) (8)
This is setup and the calculations associated with it are somewhat tedious, but not difficult. That

simplicity makes the applications of belief networks computationally tractable even if the tedium prevents
many algorithms that operate on belief networks from being truly fast.

4 Discovering Belief Networks
The previous sections described the basic structure of a belief network and a basic example as to how
they can be applied. In this section we will discuss how we can build (or learn) a belief network from
data via two key problems: structure learning and parameter learning.[1]

Structure learning is used to find the DAG that best represents the relationships and dependencies
between features in a given data set. This portion of learning is used to find the edges (and directions of
edges) best suited to the data.[1]

Parameter learning takes in a data set and a DAG and then tries to find the parameter values that
best suit it. During parameter learning the parameter values being learned are the conditional probability
distribution values.[1]

4.1 Structure Learning
Structure learning is a very difficult and by no means fully solved problem. The problem is commonly
mired in computational complexity issues that can often result in very exponential run times. [1]

Put formally, the task of structure learning is finding the DAG (G = 〈V,E〉) which best maximizes
P(G|D) (where D is our data). P(G|D) is sometimes also expressed as: [1]

P(G|D) ∝ P(D|G)P(G) (9)
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When searching for G it is possible to set the prior P(G) that appears in equation 9. In the graphical
context of belief networks, a prior describes the expected relationship between any two nodes. For example,
a uniform prior would give every pair of nodes (i, j) ∈ V a probability of 1

3 of having an edge from i→ j,
an edge j → i, and no edge. Normally a basic uniform prior is chosen given that it is difficult to know the
correct graph structure in advance, but it is possible to input an informed prior if desired. Instead of
using an informed prior it is more common to start from a uniform prior and tweak it slightly to favor or
disfavor having an edge at all (i.e. p(no edge) > 1

3 or p(no edge) < 1
3 ). [1]

4.1.1 Greedy Search
The most straightforward way to find the optimal DAG structure for our data is to simply perform an
exhaustive greedy search over all possible structures3. The problem with this method is that when more
than 5 variables are present in the data it becomes computationally unrealistic. With n variables we
have n∗(n−1)

2 possible edges and 2
n∗(n−1)

2 possible structures (when accounting for direction of the edges).
Thus, an exhaustive search could potentially require the inspection of more than 2n2

structures, which is
simply unrealistic for anything other than a small n. [1] [8]

4.1.2 Constraint-based Learning
Constraint-based learning is a class of structure learning algorithms that seek to use conditional indepen-
dence tests to find the DAG that produces the best belief network for our data. This class of algorithms
generally works in three steps:

• Reduce the number of possible DAGs (possibly by examining the Markov blanket of each node4) [8]
[1]

• Find the un-directed edges that will be present in the final DAG (using a conditional independence
tests like χ− squared) [8] [1]

• Convert the un-directed edges to directed ones to produce our final DAG [8] [1]

Although this is a general class of algorithms, many of those currently in use owe their roots to
the inductive causation algorithm. The initial IC algorithm used the final two steps to generate DAGs,
but lacked the first pruning step and much of the other optimization that can be presently found in
constraint-based learning algorithms. [8]

4.1.3 Score-based Learning
In score-based learning we assign each candidate DAG a score intended to represent its goodness of
fit. That score is then maximized in order to find the best possible DAG for our belief network. As
was the case with constraint based learning, score-based learning does not describe a single algorithm,
but rather a class of algorithms. Each of the algorithms within this class use a score to evaluate the
quality of a DAG, but each algorithm performs its search of the DAG space in a different manner. A
few of the most common search methods are greedy search, simulated annealing, and genetic algorithms. [8]

Although simulated annealing and genetic algorithms are very interesting ways to go about score-based
learning, it is common to default to the easiest solution: greedy search. One greedy search algorithm
commonly used to find belief networks is hill climbing. In hill climbing we begin with a sub-optimal DAG
form which we try to reach an optimal solution by making iterative changes. When building a DAG each
iteration means deleting, reversing, or adding a new edge to the graph and then evaluating the new score.
When the score can no longer be improved the algorithm terminates, outputting the final version of the
DAG. [8] [1]

While hill climbing in its purest form shines in its simplicity it does a few significant drawbacks.
Among those drawbacks the most problematic is that hill climbing is not guaranteed to climb the correct
hill. Hill climbing often settles on a local (not global) maximum and is prone to produce sub-par results
when starting from a sub-par position. These downsides can be mitigated to a degree with a few clever
additions to the hill climbing algorithm, but its important to note some of the issues that can be seen
when working with the hill climbing algorithm (and other greedy algorithms). [1]

3Some libraries like pgmpy even have built in exhaustive search algorithms for finding DAGs [2]
4The Markov blanket of a node v consists of the parents, children, and children’s parents of v [1]
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4.2 Parameter Learning
Once we have learned the structure of our belief network using structure learning we need to optimize the
parameters of that structure to align with our data. The two most prominent approaches to optimizing
these parameters are maximum likelihood estimation (MLE) and Bayesian estimation. [8]

Maximum likelihood estimation uses the relative frequencies of variable states to build CPDs. MLE
maximizes p(D|BN) (where D is our data and BN is our belief network). This approach is generally
effective, but when not much data is available it has a tendency to be quite fragile. Returning back to
our example with Bat, if we only have a single day’s observation using MLE will zero out most of the
probabilities in the CPDs, because only a single state will have been observed for hunger, temperature,
and ice cream. [8] [1]

Bayesian estimation uses prior CPDs to express our beliefs about the variables. One common prior
used in Bayesian estimation is a simple count adjustment to account for small small sizes. Such a prior
effectively adds a n occurrences of each variable state to the CPD. In the version of Bat’s example where
we only have a single day’s worth of observations we could use a prior that added a single count to each
variable state to avoid zeroing out our probabilities. [8] [1]

5 Naive Bayes
Although it is not frequently introduced as such, the naive Bayes classifier is a specific form of a belief
network. A naive Bayes classifier is simply a belief network where we apply the assumption that all
variables are conditionally independent. Under this assumption we can then write the joint distribution
as: [7]

p(y, x) = p(y)
D∏

j=1

p(xj |y) (10)

The naive Bayes classifier is just one example of a special case of a belief network. Many other well
known models like Markov and hidden Markov models are also special cases of belief networks. [7]

6 Data
For this project I used the well known Wisconsin Breast Cancer Diagnostic data set. [4] I chose this data
set, because some of the most effective applications of belief networks can be found in the medical field
and secondarily because of its relatively small size. Given the computational difficulties associated with
structure learning this data set allows for realistic demonstrations of the algorithms presented in section 4
while avoiding painful run times.

7 Implementation
To demonstrate the algorithms described in section 4 I used the pgmpy library. The pgmpy python library
was designed for working with graphical models. The library has implementations of many of the most
important algorithms used in graphical models5. [2]

Using pgmpy I first fit two belief networks to a training set made up of 80% of the original data
set (randomly selected). The first belief network was fit using hill climbing (to find the structure) and
Bayesian estimation (to find the parameters). The second belief network was fit using constraint-based
learning and maximum likelihood estimation.

These two learning pipelines produced two very different looking DAGs. The score-based learning
approach with hill climbing output something that looked very similar to a naive Bayes classifier, while
the constraint-based approach output a graphical model where the class was only dependent on bland

5Many thanks to the authors of pgmpy for your extensive documentation
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Figure 2: Belief Network Learned Using Constraint-based Learning

chromatin and normal nucleoli6.

Given the similarity between the model learned using hill climbing and a naive Bayes model, I also
implemented a naive Bayes model using pgmpy’s built in naive Bayes model.

Finally I wanted to compare the predictive power of the of the two belief networks to more well
established methods, so I fit logistic regression, random forest, and naive Bayes classifier to the training
data using sklearn. It should be noted that I scaled all values when working with sklearn, so the data
processing pipeline was slightly different.

With all 6 models in hand, I tested each of them on the 20% of the data set that was held out as a
test set to evaluate the accuracy of the models.

8 Results
As can be seen in table 4, the belief networks performed quite well. The model learned using hill climbing
and Bayesian estimation even managed to score the highest accuracy and F1 scores of all models. The
Bayes net learned using constraint-based learning preformed the worst in terms of F1 score (indicating it
probably is not the best model), but still performed reasonably well overall.

Model Accuracy Precision F1
BN (HC, BE) 0.97 0.94 0.96
BN (CB, MLE) 0.92 0.95 0.88

Naive Bayes (pgmpy) 0.96 0.91 0.95
Naive Bayes (sklearn) 0.95 0.88 0.93

Logistic Regression (CV) 0.96 0.94 0.94
Random Forest 0.95 0.94 0.93

Table 4: Model Results

These results suggest that belief networks can perform at the level of other commonly used models
with just a small amount of tuning. They also echo the success belief networks have had in context of
medical diagnosis. [7]

9 Conclusion
Belief networks are powerful and fundamental tools in Bayesian machine learning. Bayes nets provide
an interpretable probabilistic approach to creating classifiers, and are the basis of many of the more
commonly used Bayesian machine learning methods like naive Bayes. [7]

6The model output from hill climbing was too large to be shown using a graphic, but can be seen in the bayes_net.py file
associated with this paper
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