
Paraphrase Detection Progress Report

Ari Conati
Carleton College

conatia@carleton.edu

Elliot Pickens
Carleton College

pickense@carleton.edu

Chiraag Gohel
Carleton College

gohelc@carleton.edu

1 Introduction

There is no one way to convey an idea through
text. Any given sentence could be swapped out for
an infinite number of replacements without chang-
ing its core meaning. Conversely, sentences with
the same or similar word compositions could have
very different meanings. This presents us with the
interesting question of paraphrase detection. How
can we effectively evaluate sentiment, or trans-
late a piece of writing without some understanding
that multiple sentences can have equivalent mean-
ing, and beyond that how can we define similar-
ity between sentences? We attempt to answer this
question in paraphrase detection, in which our task
is to determine whether two given sentences are
roughly semantically equivalent.

2 Related Work

2.1 Automatically Constructing a Corpus of
Sentential Paraphrases

A challenge in paraphrase detection is a lack of
large corpora of paraphrases to train and evaluate
models (Dolan and Brockett, 2005). Paraphrases
do not often occur in the wild, so it is difficult to
come up with a suitable corpus of naturally oc-
curring sentence pairs. In particular, an ideal cor-
pus should contain a mix of paraphrases and near-
miss sentence pairs, so that detecting paraphrases
is non-trivial. These sentence pairs, however, must
be selected in a way that minimizes potential bias,
so the data is representative enough such that al-
gorithms trained on it is generalizable. Dolan
and Brockett describe the method by which the
Microsoft Research Natural Language Processing
Group devised the Microsoft Research Paraphrase
Corpus (MSRP) in response to this problem.

The starting point for the MSRP was a database of
sentence pairs collected from topically clustered

news articles, which were identified as a source
for potential paraphrases. From here, candidate
sentence pairs were chosen based on a number of
heuristics, including word overlap (sentence pairs
shared at least 3 words), length ratio (the sentence
of the pair with fewer words was at least the length
of the longer), and edit distance (e > 8). The goal
was to arrive at sentence pairs which are similar as
described above, but not overly so (in particular,
sentence pairs which only have spelling or typo-
graphical differences).

Finally, an SVM classifier was trained on a sep-
arate set of 10,000 sentence pairs which labeled
as paraphrases and non-paraphrases by two hu-
man annotators. The SVM classifier was restricted
to a small set of features and designed to over-
identify paraphrases (the goal of the classifier is
not to identify paraphrases, but to extract a set of
suitable set of pairs of similar sentences). The fi-
nal dataset was randomly selected from the set of
sentence pairs which the SVM classifier identified
as paraphrases. The final dataset was labeled by
a pair of human judges (with a third to tiebreak),
who were asked to label sentences as paraphrases
if they could be considered semantically equiva-
lent.

2.2 Syntax-Aware Multi-Sense Word
Embeddings for Deep Compositional
Models of Meaning

Over the past 20 years a number of different meth-
ods have been developed to create distributional
models of meaning that have applications in vari-
ous language based tasks (Cheng and Kartsaklis,
2015). These models assume the distributional
hypothesis that two words that occur in similar
contexts have similar meanings (1532). In recent
years various neural distributional models have
sought to create word representations by treating

them as inputs to a word prediction problem that
can be trained. One of the most well known exam-
ples of this is the skip-gram model that maximizes
an objective function using a neural network. Dis-
tributional models list the skip-gram model have
been shown to be very effective in modeling the
semantic relationships between words, but they
fail to reflect the syntactic positioning of words
that can easily alter their meaning.

In this paper the authors seek to address that prob-
lem by expanding on the idea of creating word em-
beddings in order to create sense embeddings that
better reflect the syntaxical composition of sen-
tences. The model the authors propose in this pa-
per is based around either a recursive or recurrent
neural network (RecNN and RNN for short). Both
of these forms of neural networks allow for word
embeddings and layer parameters to be learned by
optimizing a generic objective function that uses
hinge loss (1533). In both RecNN and RNN mod-
els a compositional layer is applied repeatedly to
sets of inputs using the function p = g(Wx[1:2] +
b) in either a recursive manner (following a parse
tree), or from left to right for RecNN and RNN
models respectively. The authors then introduce a
compositional layer that attempts to evaluate the
linguistic probability of a phrase or sentence vec-
tor based on both semantics and syntaxes. They
do this by generating a number of random nega-
tive samples by distorting input sentences in order
to convert the task of plausibility to a supervised
one that can be used to improve the consistency of
the learned word embeddings. Lexical ambiguity
is then addressed by applying a gated architecture
(1534). They assume that each word has some
fixed number n of senses, and that each word is
associated with some main vector (and some num-
ber n vectors that denote centroid centers). Then
when it comes time to choose a sense they are able
to compare a context vector to the centroids asso-
ciated with a word wt by cosine similarity in order
to choose best possible sense.

For the task of paraphrase detection the authors
use the sense embedding architecture as an ini-
tial step to create sense embeddings that can then
feed into a siamese architecture for the purpose of
classification. The siamese architecture works by
pushing the two sentences through two networks
with equal siamese weights that compare the two

vectors using cost function based on either the L2

norm or cosine similarity.

Before training their classifier they pre-train the
RecNN (or LSTM RNN) using the British Na-
tional Corpus, so they can get better quality senses
from the 10,000 sentences in the MRParaphrase

dataset. For the purpose of paraphrase detection
they also choose to add two extra steps to their
model. First they add a pooling layer to sense
embedding architecture to better reflect local sen-
tence features that can be lost in during the compo-
sitional phase of RecNN and RNN models. Sec-
ond they choose to ensemble the siamese classi-
fier with a logistic regression classifier that has
been trained using a set of hand crafted features
like n-gram overlap and the difference in sentence
length. The final most effective version of their
model uses a RecNN with a pooling layer to cre-
ate the sense embeddings, and an ensemble of the
siamese classifier trained on the embeddings, and
a logistic regression classifier trained using the
hand crafted features.

2.3 Discriminative Improvements to
Distributional Sentence Similarity

Bag of word representations of short units of text
for the purposes of measuring semantic similarity
suffer from high sparsity (Ji and Eisenstein, 2013).
Distributional methods address this issue by trans-
forming term-context count matrices into lower-
dimensional latent spaces. Unfortunately, dimen-
sion reduction involves loss of information that
may impede natural language processing tasks.
Ji and Eisenstein describe how labeled data may
improve distributional methods for measuring se-
mantic similarity in three ways.

Ji and Eisenstein begin by creating a new dis-
criminative term-weighting metric named TF-
KLD. Similar to Linear Discriminant Analysis, the
scheme attempts to increase the weights of dis-
criminative distributional features, and decrease
those that are not, based on supervised data. They
use the Kullback-Leibler divergence measure to
determine the discriminability of words in a given
training set as to reweight the features in the sparse
matrix before factorization. Such increases the
weights of words whose likelihood of appearing
in a pair of sentences is strongly influenced by
whether the sentences are paraphrases.

Page 2 of 5

TF-KLD outperformed previous TF-IDF bench-
marks, regardless of factorization technique, when
predicting whether a pair of sentences is a para-
phrase by measuring their cosine similarity in la-
tent space (dimensionality K = 100). Furthermore
TF-KLD supervised classification methods, with
added fine-grained lexical features, outperformed
the prior state-of-the-art.

3 Data Set

The data set we are using is the Microsoft Re-
search Paraphrase Corpus (MSRP), which is a
database of 5801 sentence pairs (Dolan and Brock-
ett, 2005). These sentences were collected from
news clusters across the World Wide Web, with
sentences being added to the database based on a
number of heuristics (including for instance, edit
distance and word overlap) intended to ensure that
the sentences had some lexical similarities. Each
of these sentence pairs is accompanied by a judg-
ment of whether the two sentences are paraphrases
of each other (that is, they are roughly semanti-
cally equivalent). These judgments were decided
by two human raters (with a third to settle dis-
agreements), who were instructed to determine
whether the sentences ’mean the same thing’ on
a high level. The criterion for semantic equiva-
lence is intentionally loose and somewhat vague,
to prevent the set of paraphrases from containing
only sentences which are practically equivalent at
the string level.

The sentences were randomly divided into a train-
ing set and a test set, with the training set con-
taining roughly 70% of the sentence pairs, and the
other 30% comprising the test set.

Training Set Length 4076
of Paraphrases in Training Set 2753

Testing Set Length 1725
of Paraphrases in Testing Set 1147

Average Training Sentence Length 19.7728
Average Testing Sentence Length 19.648

4 Evaluation Metrics

For this problem we are simply trying to predict
whether or not a pair of sentences are paraphrases
of one another. Thus, we are able to classify ev-
ery pair of sentences as being a 1 or 0 based on
its paraphrase status. Given the existence of these
convenient labels we are able to use fairly straight

forward binary classification metrics to evaluate
our model. Those metrics are accuracy, precision,
recall, and the f1 score. We use these 4 metrics to
analyze our model, because due to the class imbal-
ances we have in our data set we need to be able
to investigate the ways in which our model is han-
dling both classes.

5 Baseline

For our baseline we compared the n-gram overlap
of our sentence pairs. The n-gram overlap is done
by first finding the number of n-grams that exits in
both sentences, and then finding the n-gram ratio
by taking that value over the average length of the
two sentences. We then set a classification thresh-
old by finding the average n-gram overlap of the
of the sentence pairs of class 1 (the paraphrases).
Finally we use our threshold to classify the sen-
tence pairs in our data set by classifying pairs with
a overlap value above the threshold as being part
of class 1, and all others as being part of class 0.

We ran this classification system for n-grams of
lengths 1 through 5, and achieved values for all
4 metrics that look to be at least slightly better
than random guessing. In general we saw accuracy
values for all lengths above 60%, and surprisingly
high precision values that hovered in the high 70%
range.

Model Accuracy Precision F1
1-gram 65.95 80.28 71.63
2-gram 63.69 78.95 69.37
3-gram 60.15 77.22 65.46
4-gram 58.41 76.78 63.17
5-gram 56.96 76.51 61.11

Table 1: Results from baseline model using various n-gram

lengths.

6 Improved Baseline

Our better than baseline model implements gen-
sims doc2vec function to create sentence embed-
dings by training the doc2vec model on the train-
ing subset of the MRParaphrase data. We then
create a feature set for each pair of sentences in
the training set by taking the outer product of each
pair of embeddings. The outer products are then
scaled, and truncated using an SVD method to
reduce the number of dimensions down to 100.
These features are then feed into a cross validated
grid search methods for both logistic regression,
and a linear SVM. We also tried using random

Page 3 of 5

forests fit using Extra Trees, and the standard deci-
sion tree method based on parameters found using
a randomized grid search. It should be noted that
the random forest methods were fit using an un-
scaled, un-truncated version of the features.

We then predicted class labels for our test set
by first inferring sentence embeddings using the
trained doc2vec model, and then creating features
using the same set of methods described above.

Model Accuracy Precision F1
SVC 61.80 70.68 71.68
Log. Reg. 67.53 69.84 78.68
Extra Trees 68.34 68.38 80.38
Random Forest 68.23 67.78 80.65

Table 2: Better than baseline results from various models run

on doc2vec sentence embeddings.

7 External API

BERT (Bidirectional Encoder Representations
from Transformers) makes use of Transformer to
create sentence embeddings. Bert is used in the
current state of the art paraphrase detection mod-
els, so we decided to try and employ it in our
API based model. Pre-trained versions of the
BERT transformer along with a myriad of python
scripts that can be used to apply it can be found
on Google Research’s Github page. These scripts
even include a pre-written classifier that can be run
directly on the MRParaphrase data. Their pre-
canned classifier outputs accuracy values in the
mid to high 80s, and easily out preforms almost
all paraphrase detection models that are not an ab-
solutely enormous ensemble method designed by
Microsoft or Alibaba.

We wanted to do something using the BERT em-
beddings other than just run Google’s classifier.
To do this we started by getting token by to-
ken embeddings for all of the sentences in the
MRParaphrase corpus using the 1024 layer un-
cased version of BERT. This produced nearly 20
Gb of token embeddings in the form of json lists.
Given that we could not load all of these embed-
dings into memory at once we choose to only used
the weights given by the final layer of the trans-
former, and to used to average weight of each to-
ken instead of including all 300 weights originally
assigned to each token. These average weights
are then combined to form the sentence features.
The sentence feature lists are, however, of differ-
ent lengths due to the different token lengths of the

sentences. To fix jaggedness of the array that re-
sults from stacking all of these sentence features
we pad out all of the features list using zeros. Fi-
nally to get features we once again take the outer
product of out sentence vectors.

We then tried a few different methods of classi-
fication. First we ran the data through the same
logistic regression, and random forest classifiers
we used in our better than baseline model. These
methods preformed fairly well but we wanted to
do something better. We were able to improve our
model by taking some inspiration from the classi-
fier used in the ”syntax aware sense embeddings,”
and creating an ensemble using a classifier run on
the outer product of the BERT embeddings and a
logistic regression classifier trained on the hand
crafted features of unigram overlap, and the dif-
ference in sentence length. We tried a number of
of different classifiers to use in our ensemble, and
have had promising results using both regular ran-
dom forests, and AdaBoost.

Model Accuracy Precision F1
Log. Reg. 66.49 66.49 79.88
Random Forest 68.17 68.12 80.37
RF + LR 69.33 69.99 80.36
AdaBoost + LR 69.97 71.98 79.91
GradientBoost + LR 68.93 69.98 79.97

Table 3: External API results from various models run on

BERT sentence embeddings.

8 Shortcomings and Future Work

Words can have drastically or subtly different
meanings depending on the context they appear
in (Cheng and Kartsaklis, 2015). The doc2vec
model that we use makes the simplifying assump-
tion that a word has just one possible embedding
when generating its sentence embeddings. Look-
ing into methods of capturing the context of words
and adjusting our sentence embeddings accord-
ingly could greatly improve the performance of
our models.

There is also a great deal of room for improvement
in our implementation of the BERT API. In partic-
ular, we are currently failing to create truly infor-
mative sentence embeddings due to the differing
lengths of the sentences in our corpus. We could
likely greatly improve our model by building truly
normalized sentence level embeddings rather than
simply padding a very jagged array. We tried using
the average embedding values of the sentence as

Page 4 of 5

padding instead of simply using zeros for all sen-
tences, but this failed to improve our model lead-
ing us to believe we need a more drastic fix.

9 Conclusion

We implemented a number of different model vari-
ants for each of the three categories (baseline,
baseline+, API). The three selected models (the
overall best performing from each category) per-
form well in different areas. The unigram base-
line model boasts the highest precision of 80.23%,
indicating a conservative approach with a higher
threshold for labeling a set of sentences as para-
phrases. Such can be understood through the na-
ture of the model; setting a threshold based on n-
gram overlap reduces the probability of the model
assigning two sentences as paraphrases without
a certain proportion of n-gram equivalence. The
model fails to account for the semantic equiva-
lence of n-grams.

Model Accuracy Precision F1
Baseline (unigram) 65.95 80.28 71.63
Baseline+ (Extra Trees) 68.34 68.38 80.38
API (AdaBoost + LR) 69.97 71.98 79.91

Table 4: Selected models from each baseline level.

The extra trees model run on doc2vec sentence
embeddings performs similarly on the corpus to
the AdaBoost and logistic regression model us-
ing Bert sentence embeddings. Both produce F1
scores higher than that of the baseline model, with
our better than baseline model touting the highest
(80.38%). The external API model produces the
highest accuracy (69.97%).

The inability of one sole model to perform suffi-
ciently better than the others in regard to desired
metrics demonstrates the intricacy of the para-
phrase detection task. Models based on word em-
beddings show promise in their ability to represent
sentence semantics.

References
Jianpeng Cheng and Dimitri Kartsaklis. 2015. Syntax-

aware multi-sense word embeddings for deep com-
positional models of meaning. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1531–1542, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

William B. Dolan and Chris Brockett. 2005. Automati-
cally constructing a corpus of sentential paraphrases.

In Proceedings of the Third International Workshop
on Paraphrasing (IWP2005).

Yangfeng Ji and Jacob Eisenstein. 2013. Discrimina-
tive improvements to distributional sentence simi-
larity. In Proceedings of the 2013 Conference on
Empirical Methods in Natural Language Process-
ing, pages 891–896, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

Page 5 of 5

https://doi.org/10.18653/v1/D15-1177
https://doi.org/10.18653/v1/D15-1177
https://doi.org/10.18653/v1/D15-1177
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/I05-5002
https://www.aclweb.org/anthology/D13-1090
https://www.aclweb.org/anthology/D13-1090
https://www.aclweb.org/anthology/D13-1090

