
Replicating Bayesian Distributional Word Embeddings

Elliot Pickens
pickense@carleton.edu

Kevin Ros
kevinros@vassar.edu

28 June 2019

Abstract

The Skip-gram model has been widely used to create word embeddings for over half a
decade. One known implementation, word2vec, has reached a particularly high level of promi-
nence in the natural language processing community. word2vec embeddings have been ap-
plied to nearly every problem in the realm of NLP, but it is not without limitations. The vector rep-
resentations that it produces can sometimes be overly reductive in nature. One way to expand
upon these embeddings is by dropping their reliance on vector representations and moving
towards distributional representations of word embeddings in conjunction with Bayesian Statis-
tics. The Bayesian Skip-Gram Model (BSG) produces distributional representations of words
allowing for operations not normally possible with vector embeddings, such as evaluation within
context and entailment. In this paper, we attempt to replicate the Bayesian Skip-gram model
results described in Embedding Words as Distributions with a Bayesian Skip-gram Model by
Arthur Bražinskas, Serhii Havrylov, and Ivan Titov.

1



1 Outline

In this paper we attempt to replicate the results presented in [2]. In section 2, we explain the back-
ground and significance of Bayesian word embeddings and provide some motivating examples of
embedding applications. In Section 3, we describe our data collection process and discuss both
the authors’ and our own implementations of the model found in [2]. Following this, we discuss the
results of the various implementations in Section 4. We finish with a discussion of the results and
conclusion, which can be found in Sections 5 and 6, respectively.

2 Background and Significance of Word Embeddings

The phrase word embedding generally refers to a technique in the field of natural language pro-
cessing, where individual words are represented as vectors of real numbers. Usually, these vectors
encode various semantic relationships between the words. The dimensionality of these vectors
can quickly become unmanageable, especially when techniques such as one-hot encoding are
used on large corpora to create the vectors. To prevent this, researchers developed methods to
maintain low dimensionality [3, 4, 6, 7]. Typically, the vectors remain uniformly fixed in 50-200
dimensional space, regardless of the size of the corpora of the number of words. One of the most
popular methods of low-dimensional word embedding generation is word2vec [6], which leverages
techniques such as the Continuous Skip-gram Model to generate the embeddings from unstruc-
tured text [5]. However, techniques like the ones mentioned above fix word embeddings across
the entire data set, effectively ignoring context post-generation. In other words, only one vector
is generated per word, regardless of if the word has multiple meanings within the corpora. One
solution is to generate a probability distribution for each word. This was done in [8], where the
authors encoded each word as a Gaussian distribution, referred to as word2gauss. More recently,
Bražinskas et al. proposed a Bayesian version of the Skip-gram architecture [2]. The use of
Bayesian methods allow for the creation of ”context-specific densities”, which ”encode uncertainty
about the sense of a word given its context and correspond to the approximate posterior distribu-
tions within [the authors’] model” [2]. Put simply, the meaning of a word now varies based on its
context.

One possible application of word embeddings is to find substitutions for words in sentences.
For example, consider the following sentence: ”The rope was tightly wound around the post.”
In a non-probabilistic setting that does not take into account context, possible substitutions may
include ”injure, harm, hurt”. However, by using Bayesian approach, we can incorporate context to
get more accurate substitutions, such as ”wrapped” or ”looped”. We formally explore this setting
in Section 4.

3 Methods and Data Collection

The corpora used in [2], ukWaC and Wackypedia, were collected and distributed by [1]. ukWac
was created by web-crawling .uk domains and consists of over one billion words. Wackypedia
is an online encyclopedia that anyone can edit. In addition to the corpora, we used the authors’
publically-available GitHub repository1 as a starting point for our model. Due to technical lim-
itations, some slight modifications of the original code were needed in order for the model to

1https://github.com/ixlan/BSG

2



run without error. We successfully generated five different models. We ran our first three mod-
els (WackFull, Wack10k, Wack20k) on the Wackypedia corpus, the fourth model (ukWac) on the
ukWaC corpus, and the fifth model (Wack + ukWaC) on a concatination of the two corpora. Wack-
Full ran on the entire Wackypedia corpus whereas Wack10k and Wack20k both ran on a smaller
subset of the Wackypedia corpus. The Wack20k model looked at the most common 20,000 words,
and every other model only looked at the most common 10,000 words. In all of our models, the
learning rate was set to 0.00275, the vector dimensions were set to 100, and the word window was
set to 5 on either side. Additionally, negative sampling was set to 10. Note that the original authors
had a learning rate of 0.00055 and a vocabulary size of 280,000. In terms of pre-processing the
corpora, for all of our models we removed only punctuation and sent each word to lower case.
In the original authors’ model, it was not clear how much pre-processing was performed on the
corpora. Additionally, for a more thorough mathematical explanation of the Bayesian Skip-gram
method, see Section 2 of [2].

4 Results of the Models

Our experiments produced quite mixed results. Although, throughout the course of our experimen-
tation with the BSG model we ran well over 30 different instances of the model we faced serious
limitations in terms of computing time and server access. Due to a cap on the number of cores we
were allowed to employ during each simulation a single instance of the model could take up to five
days to complete when running the full data-set used in the paper. Because of the computational
limitations, we were unable to run the BSG model with the full set of hyperparameter settings used
in the original paper. Even when using our notably more simplified version of the model, however,
we were still able to score decently well on many metrics, and produce lexical substitutions that
generally appear correct.

In Table 1, we compare the various models using the sum of scores of word similarity bench-
marks (Score Sum) and the generalized average precision (GAP). More information about the
word similarity benchmarks and GAP scores can be found in [2].

Numerical Results for Each Model
Model Score Sum Mean Gap
ukWaC 4.3726 0.314831
WackFull 4.8977 0.285820
ukWaC + Wack. 4.9377 0.308338
Wack10k 5.8243 0.288952
Wack20k 5.9429 0.345963
Bražinskas et al. 7.26 0.437

Table 1: Summed similarity scores and mean GAP values for all models.

It is clear that the model presented in [2] by Bražinskas et al. outperforms all of our models, but
our best results (coming from Wack20k) while markedly worse are within a reasonable distance of
the best. Next we show some example substitution results from Wack20k:

3



Substitution Results for Wack20k
Sentence Top 3 Substitution Choices
press people loved the film as well movie, production, documentary
finally this new rule will also, ultimately, lastly
this meditation can fix many repair, set, do
health information to provide and manage your-
-health care and related

control, handle, oversee

Table 2: Substitutions given by the BSG model trained on Wack20k.

Although it has comparable results with the original model the Wack20k model still failed in
certain substitution tasks. One instance of this error can be seen in the following sentence: ”the
summit did not take place until next year”, the top three substitutions proposed by Wack20k were
”be”, ”begin”, and ”include”. Of the three results ”begin” and ”be” make some sense in terms of
sentiment, but are grammatically incorrect.

5 Discussion

Our results seem to indicate that the size of the vocabulary is one of the most important parameters
when tasked with generating word embedding distributions. Although Wack20K was trained on a
corpus three times smaller than WackFull and over five times smaller than ukWaC + Wack, it still
achieved significantly better results. And when compared to the immense size of the vocabulary
described in [2], it is understandable why their model outperforms ours.

Regardless of this, many questions still remain. To what effect does a difference in the pre-
processing have on the model scores? Or how do different concatenations of the corpora effect
the scores? Additionally, how do these changes compare to similar changes in traditional non-
probabilistic models? All of these questions are potential areas of investigation.

In both our experiments and the Bražinskas paper we can see the potential of the BSG model
on a number of similarity benchmarks, but moving forward it would be interesting to apply the
distributional embeddings to the GLUE tasks [9]. In particular, it would be useful to see if these
embeddings can be expanded to get distributional representations of sentences or documents.
In paraphrase and duplicate question detection tasks, for example, distributional representations
to sentence embeddings may be especially applicable given their ability to find show entailment.
Common methods used for paraphrase and duplicate question detection use vector based sen-
tence embeddings to measure similarity, so it would be fascinating to see how distributional em-
beddings work in this context.

6 Conclusion

During our series of experiments with the BSG model we had very mixed results. We were unable
to fully recreate the results shown in the Embedding Words as Distributions with a Bayesian Skip-
gram Model, but given our limited computational resources we still learned quite a bit about its
properties especially in cases of limited data. It is clear that the BSG method requires significant
data to function effectively, but when data is present and hyperparameters are chosen effectively
the model can preform at a very high level while producing distributional outputs. Overall, we are
optimistic that the future developments of probabilistic word embedding generation will continue to
have an impact on the field of natural language processing.

4



7 Appendix

7.1 Acknowledgements

We would like to thank Dr. Jingchen (Monika) Hu for her guidance through the involved mathemat-
ics behind the Bayesian Skip-gram model. Additionally, we would like to thank Dr. Eros Zanchetta
for providing us with the Wackypedia and ukWaC corpora.

5



References

[1] Marco Baroni, Silvia Bernardini, Adriano Ferraresi, and Eros Zanchetta. The wacky wide web:
a collection of very large linguistically processed web-crawled corpora. Language resources
and evaluation, 43(3):209–226, 2009.

[2] Arthur Bražinskas, Serhii Havrylov, and Ivan Titov. Embedding words as distributions with a
bayesian skip-gram model. CoRR, abs/1711.11027, 2017.

[3] Ronan Collobert, Jason Weston, Léon Bottou, Michael Karlen, Koray Kavukcuoglu, and Pavel
Kuksa. Natural language processing (almost) from scratch. Journal of machine learning re-
search, 12(Aug):2493–2537, 2011.

[4] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Landauer, and Richard
Harshman. Indexing by latent semantic analysis. Journal of the American society for informa-
tion science, 41(6):391–407, 1990.

[5] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[6] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed repre-
sentations of words and phrases and their compositionality. In Advances in neural information
processing systems, pages 3111–3119, 2013.

[7] Jeffrey Pennington, Richard Socher, and Christopher Manning. Glove: Global vectors for
word representation. In Proceedings of the 2014 conference on empirical methods in natural
language processing (EMNLP), pages 1532–1543, 2014.

[8] Luke Vilnis and Andrew McCallum. Word representations via gaussian embedding. arXiv
preprint arXiv:1412.6623, 2014.

[9] Alex Wang, Amapreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

6


